
CSS Electronics | www.csselectronics.com | contact@csselectronics.com
Last modified: Jan 31, 2023

http://www.csselectronics.com
mailto:contact@csselectronics.com

Table of Contents

CAN Bus Explained - A Simple Intro 5

What is CAN bus? 5

Top 4 benefits of CAN bus 8

The CAN bus history in short 8

The future of CAN bus 9

What is a CAN frame? 9

Logging CAN data - example use cases 10

How to log CAN bus data 10

How to decode raw CAN data to 'physical values' 11

What is the link between CAN, J1939, OBD2, CANopen ...? 13

J1939 Explained - A Simple Intro 15

What is J1939? 15

J1939 history & future 16

4 key characteristics of J1939 16

The J1939 connector (9-pin) 18

The J1939 PGN and SPN 19

J1939 truck sample data: Raw & physical values 22

J1939 request messages 23

J1939 transport protocol (TP) 24

Logging J1939 data - example use cases 27

6 practical tips for J1939 data logging 27

OBD2 Explained - A Simple Intro 29

What is OBD2? 29

The OBD2 connector 30

Does my car have OBD2? 31

Link between OBD2 and CAN bus 31

OBD2 history & future 32

OBD2 parameter IDs (PID) 34

How to log OBD2 data? 34

Raw OBD2 frame details 35

OBD2 data logging - use case examples 36

UDS Explained (Unified Diagnostic Services) 38

What is the UDS protocol? 38

UDS message structure 39

UDS vs CAN bus: Standards & OSI model 45

CAN ISO-TP - Transport Protocol (ISO 15765-2) 47

UDS vs. OBD2 vs. WWH-OBD vs. OBDonUDS 49

FAQ: How to request/record UDS data 52

Example 1: Record single frame UDS data (Speed via WWH-OBD) 55

Example 2: Record & decode multi frame UDS data (SoC) 56

Example 3: Record the Vehicle Identification Number 59

UDS data logging - applications 62

CANopen Explained - A Simple Intro 63

What is CANopen? 63

Six core CANopen concepts 64

CANopen communication basics 65

CANopen Object Dictionary 69

SDO - configuring the CANopen network 70

PDO - operating the CANopen network 72

CANopen data logging - use case examples 73

CAN FD Explained - A Simple Intro 74

Why CAN FD? 74

What is CAN FD? 74

How does CAN FD work? 75

Overhead and data efficiency of CAN FD vs. CAN 77

Examples: CAN FD applications 79

Logging CAN FD data - use case examples 79

CAN FD - outlook 80

LIN Bus Explained - A Simple Intro 82

What is LIN bus? 82

LIN bus applications 84

How does LIN bus work? 85

Six LIN frame types 86

Advanced LIN topics 87

LIN Description File (LDF) vs. DBC files 88

LIN bus data logging - use case examples 90

Practical considerations for LIN data logging 91

CAN DBC File Explained - A Simple Intro 92

What is a CAN DBC file? 92

Example: Extract physical value of EngineSpeed signal 94

CAN DBC editor playground 96

J1939/OBD2 data & DBC samples 96

Advanced: Meta info, attributes & multiplexing 96

DBC software tools (editing & processing) 98

CAN Bus Errors Explained - A Simple Intro 100

What are CAN bus errors? 100

The CAN bus error frame 101

CAN error types 105

CAN node states & error counters 108

Examples: Generating & logging error frames 109

LIN bus errors 113

Example use cases for CAN error frame logging 114

FAQ 114

NMEA 2000 Explained - A Simple Intro 116

What is NMEA 2000? 116

NMEA 2000 vs NMEA 0183 117

NMEA history and certification 118

NMEA 2000 OSI model & standards 120

NMEA 2000 connectors & network topology 121

NMEA 2000 Fast Packet 123

N2K PGN & data fields 124

Logging NMEA 2000 maritime data 127

ISOBUS (ISO 11783) Explained - A Simple Intro 129

What is ISOBUS? 129

ISOBUS history and AEF 130

ISOBUS OSI model & standards 131

ISOBUS Functionalities 133

ISOBUS vs SAE J1939 136

The ISOBUS connectors 137

ISOBUS PGN and SPN [+ DBC] 138

Logging tractor/implement data 140

Data logging use case examples 142

CCP / XCP on CAN Explained - A Simple Intro 143

What is CCP/XCP? 143

CCP message types 146

How to record ECU data via CCP 150

Decoding CCP signal data from ECUs 155

A2L - ECU Description Files 157

Seed & key authorization 159

XCP on CAN - the basics 160

Using the CANedge for CCP/XCP data acquisition 164

CCP/XCP data logging - applications 164

CAN Bus Explained - A Simple Intro
Need a simple, practical intro to CAN bus? In this tutorial we explain the Controller Area Network (CAN bus) 'for dummies'
incl. message interpretation, CAN logging - and the link to OBD2, J1939 and CANopen.

Read on to learn why this has become the #1 guide on CAN bus.

What is CAN bus?
Your car is like a human body:

The Controller Area Network (CAN bus) is the nervous system, enabling communication.

In turn, 'nodes' or 'electronic control units' (ECUs) are like parts of the body, interconnected via the CAN bus. Information
sensed by one part can be shared with another.

So what is an ECU?

In an automotive CAN bus system, ECUs can e.g. be the engine control unit, airbags, audio system etc. A modern car may
have up to 70 ECUs - and each of them may have information that needs to be shared with other parts of the network.

https://en.wikipedia.org/wiki/CAN_bus

This is where the CAN standard comes in handy:

The CAN bus system enables each ECU to communicate with all other ECUs - without complex dedicated wiring.

Specifically, an ECU can prepare and broadcast information (e.g. sensor data) via the CAN bus (consisting of two wires,
CAN low and CAN high). The broadcasted data is accepted by all other ECUs on the CAN network - and each ECU can then
check the data and decide whether to receive or ignore it.

CAN bus physical & data link layer (OSI)

In more technical terms, the controller area network is described by a data link layer and physical layer. In the case of
high speed CAN, ISO 11898-1 describes the data link layer, while ISO 11898-2 describes the physical layer. The role of
CAN is often presented in the 7 layer OSI model as per the illustration.

The CAN bus physical layer defines things like cable types, electrical signal levels, node requirements, cable impedance
etc. For example, ISO 11898-2 dictates a number of things, including below:

● Baud rate: CAN nodes must be connected via a two wire bus with baud rates up to 1 Mbit/s (Classical CAN) or 5
Mbit/s (CAN FD)

● Cable length: Maximal CAN cable lengths should be between 500 meters (125 kbit/s) and 40 meters (1 Mbit/s)
● Termination: The CAN bus must be properly terminated using a 120 Ohms CAN bus termination resistor at

each end of the bus

https://en.wikipedia.org/wiki/Data_link_layer
https://www.iso.org/obp/ui/#iso:std:iso:11898:-2:ed-2:v1:en
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro
https://www.csselectronics.com/products/terminal-resistor-can-bus

High speed CAN, low speed CAN, LIN bus, …

In the context of automotive vehicle networks, you'll often encounter a number of different types of network types.
Below we provide a very brief outline:

● High speed CAN bus: The focus of this article is on high speed CAN bus (ISO 11898). It is by far the most
popular CAN standard for the physical layer, supporting bit rates from 40 kbit/s to 1 Mbit/s (Classical CAN). It
provides simple cabling and is used in practically all automotive applications today. It also serves as the basis
for several higher layer protocols such as OBD2, J1939, NMEA 2000, CANopen etc. The second generation of
CAN is referred to as CAN FD (CAN with Flexible Data-rate)

● Low speed CAN bus: This standard enables bit rates from 40 kbit/s to 125 kbit/s and allows the CAN bus
commmunication to continue even if there is a fault on one of the two wires - hence it is also referred to as
'fault tolerant CAN'. In this system, each CAN node has it's own CAN termination

● LIN bus: LIN bus is a lower cost supplement to CAN bus networks, with less harness and cheaper nodes. LIN
bus clusters typically consist of a LIN master acting as gateway and up to 16 slave nodes. Typical use cases
include e.g. non-critical vehicle functions like aircondition, door functionality etc. - for details see our LIN bus
intro or LIN bus data logger article

● Automotive ethernet: This is increasingly being rolled out in the automotive sector to support the high
bandwidth requirements of ADAS (Advanced Driver Assistance Systems), infotainment systems, cameras etc.
Automotive ethernet offers much higher data transfer rates vs. CAN bus, but lacks some of the
safety/performance features of Classical CAN and CAN FD. Most likely, the coming years will see both
automotive ethernet, CAN FD and CAN XL being used in new automotive and industrial development

https://www.csselectronics.com/pages/obd2-explained-simple-intro
https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/pages/marine-telematics-boat-data
https://www.csselectronics.com/pages/canopen-tutorial-simple-intro
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro
https://www.csselectronics.com/products/terminal-resistor-can-bus
https://www.csselectronics.com/pages/lin-bus-protocol-intro-basics
https://www.csselectronics.com/pages/lin-bus-protocol-intro-basics
https://www.csselectronics.com/pages/lin-bus-data-logger
https://can-newsletter.org/engineering/engineering-miscellaneous/200103_2020s-decade-welcome-can-xl_cia

Top 4 benefits of CAN bus
The CAN bus standard is used in practically all vehicles and many machines due to below key benefits:

Simple & low cost
ECUs communicate via a

single CAN system instead
of via direct complex

analogue signal lines -
reducing errors, weight,

wiring and costs

Fully centralized
The CAN bus provides 'one

point-of-entry' to
communicate with all

network ECUs - enabling
central diagnostics, data

logging and configuration

Extremely robust
The system is robust

towards electric
disturbances and
electromagnetic

interference - ideal for
safety critical applications

(e.g. vehicles)

Efficient
CAN frames are prioritized
by ID so that top priority
data gets immediate bus
access, without causing

interruption of other
frames

The CAN bus history in short
● Pre CAN: Car ECUs relied on complex point-to-point wiring
● 1986: Bosch developed the CAN protocol as a solution
● 1991: Bosch published CAN 2.0 (CAN 2.0A: 11 bit, 2.0B: 29 bit)
● 1993: CAN is adopted as international standard (ISO 11898)
● 2003: ISO 11898 becomes a standard series
● 2012: Bosch released the CAN FD 1.0 (flexible data rate)
● 2015: The CAN FD protocol is standardized (ISO 11898-1)
● 2016: The physical CAN layer for data-rates up to 5 Mbit/s standardized in ISO 11898-2

Today, CAN is standard in automotives (cars, trucks, buses, tractors, ...), ships, planes, EV batteries, machinery and more.

https://en.wikipedia.org/wiki/Robert_Bosch_GmbH
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro
https://www.csselectronics.com/pages/obd2-data-logger-sd-memory-convert
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/marine-telematics-boat-data
https://www.csselectronics.com/pages/electric-vehicle-data-logger-cloud-battery-telematics
https://www.csselectronics.com/pages/canopen-data-logger

The future of CAN bus
Looking ahead, the CAN bus protocol will stay relevant - though it will be impacted by major trends:

● A need for increasingly advanced vehicle functionality
● The rise of cloud computing
● Growth in Internet of Things (IoT) and connected vehicles
● The impact of autonomous vehicles

In particular, the rise in connected vehicles (V2X) and cloud will lead to a rapid growth in vehicle telematics and IoT CAN
loggers. In turn, bringing the CAN bus network 'online' also exposes vehicles to security risks - and may require a shift to
new CAN protocols like CAN FD.

The rise of CAN FD

As vehicle functionality expands, so does the load on the CANbus. To support this, CAN FD (Flexible Data Rate) has
been designed as the 'next generation' CAN bus. Specifically, CAN FD offers three benefits (vs Classical CAN):

● It enables data rates up to 8 Mbit/s (vs 1 Mbit/s)
● It allows data payloads of up to 64 bytes (vs 8 bytes)
● It enables improved security via authentication

In short, CAN FD boosts speed and efficiency - and it is therefore being rolled out in newer vehicles. This will also drive
an increasing need for IoT CAN FD data loggers.

"The first cars using CAN FD will appear in 2019/2020 and CAN FD will replace step-by-step Classical CAN"
- CAN in Automation (CiA), "CAN 2020: The Future of CAN Technology"

What is a CAN frame?
Communication over the CAN bus is done via CAN frames.

Below is a standard CAN frame with 11 bits identifier (CAN 2.0A), which is the type used in most cars. The extended 29-bit
identifier frame (CAN 2.0B) is identical except the longer ID. It is e.g. used in the J1939 protocol for heavy-duty vehicles.
Note that the CAN ID and Data are highlighted - these are important when recording CAN bus data, as we'll see below.

The 8 CAN bus protocol message fields

● SOF: The Start of Frame is a 'dominant 0' to tell the other nodes that a CAN node intends to talk
● ID: The ID is the frame identifier - lower values have higher priority

https://www.can-cia.org/fileadmin/resources/documents/proceedings/2017_schlegel.pdf
https://www.knowarth.com/how-cloud-computing-is-changing-the-automotive-industry/
https://www.businessinsider.com/iot-connected-smart-cars?r=US&IR=T
https://en.wikipedia.org/wiki/Autonomous_car
https://en.wikipedia.org/wiki/Vehicle-to-everything
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/pages/secure-can-bus-logging-telematics-intro
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.can-cia.org/news/cia-in-action/view/can-2020-the-future-of-can-technology/2016/3/21/
https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial

● RTR: The Remote Transmission Request indicates whether a node sends data or requests dedicated data from
another node

● Control: The Control contains the Identifier Extension Bit (IDE) which is a 'dominant 0' for 11-bit. It also
contains the 4 bit Data Length Code (DLC) that specifies the length of the data bytes to be transmitted (0 to 8
bytes)

● Data: The Data contains the data bytes aka payload, which includes CAN signals that can be extracted and
decoded for information

● CRC: The Cyclic Redundancy Check is used to ensure data integrity
● ACK: The ACK slot indicates if the node has acknowledged and received the data correctly
● EOF: The EOF marks the end of the CAN frame

Logging CAN data - example use cases
There are several common use cases for recording CAN bus data frames:

Logging/streaming data
from cars

OBD2 data from cars can
e.g. be used to reduce fuel
costs, improve driving, test

prototype parts and
insurance

learn more

Heavy duty fleet
telematics

J1939 data from trucks,
buses, tractors etc. can be
used in fleet management
to reduce costs or improve

safety
learn more

Predictive
maintenance

Vehicles and machinery can
be monitored via IoT CAN

loggers in the cloud to
predict and avoid

breakdowns
learn more

Vehicle/machine
blackbox

A CAN logger can serve as a
'blackbox' for vehicles or

equipment, providing data
for e.g. disputes or

diagnostics
learn more

How to log CAN bus data
As mentioned, two CAN fields are important for CAN logging: The CAN ID and the Data. To record CAN data you need a
CAN logger. This lets you log timestamped CAN data to an SD card. In some cases, you need a CAN interface to stream
data to a PC - e.g. for car hacking.

https://www.csselectronics.com/pages/obd2-data-logger-sd-memory-convert
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/predictive-maintenance-can-bus-iot
https://www.csselectronics.com/pages/black-box-can-bus-logger
https://www.csselectronics.com/
https://www.csselectronics.com/pages/can-bus-to-usb-wireshark
https://www.csselectronics.com/pages/can-bus-sniffer-reverse-engineering

Connecting to the CAN bus

This first step is to connect your CAN logger to your CAN bus. Typically this involves using an adapter cable:

● Cars: In most cars, you simply use an OBD2 adapter to connect. In most cars, this will let you log raw CAN
data, as well as perform requests to log OBD2 or UDS (Unified Diagnostic Services) data

● Heavy duty vehicles: To log J1939 data from trucks, excavators, tractors etc you can typically connect to the
J1939 CAN bus via a standard J1939 connector cable (deutsch 9-pin)

● Maritime: Most ships/boats use the NMEA 2000 protocol and enable connection via an M12 adapter to log
marine data

● CANopen: For CANopen logging, you can often directly use the CiA 303-1 DB9 connector (i.e. the default
connector for our CAN loggers), optionally with a CAN bus extension cable

● Contactless: If no connector is available, a typical solution is to use a contactless CAN reader - e.g. the
CANCrocodile. This lets you log data directly from the raw CAN twisted wiring harness, without direct
connection to the CAN bus (often useful for warranty purposes)

● Other: In practice, countless other connectors are used and often you'll need to create a custom CAN bus
adapter - here a generic open-wire adapter is useful

When you've identified the right connector and verified the pin-out, you can connect your CAN logger to start recording
data. For the CANedge/CLX000, the CAN baud rate is auto-detected and the device will start logging raw CAN data
immediately.

Example: Raw CAN sample data (J1939)

You can optionally download raw OBD2 and J1939 samples from the CANedge2 in our intro docs. You can e.g. load this
data in the free CAN bus decoder software tools. Data from the CANedge is recorded in the popular binary format,
MF4, but can be converted to any file format via our simple MF4 converters (e.g. to CSV, ASC, TRC, ...).

Below is a CSV example of raw CAN frames logged from a heavy-duty truck using the J1939 protocol. Notice that the
CAN IDs and data bytes are in hexadecimal format:

TimestampEpoch;BusChannel;ID;IDE;DLC;DataLength;Dir;EDL;BRS;DataBytes
1578922367.777150;1;14FEF131;1;8;8;0;0;0;CFFFFFF300FFFF30
1578922367.777750;1;10F01A01;1;8;8;0;0;0;2448FFFFFFFFFFFF
1578922367.778300;1;CF00400;1;8;8;0;0;0;107D82BD1200F482
1578922367.778900;1;14FF0121;1;8;8;0;0;0;FFFFFFFFFFFFFCFF
…

Example: CANedge CAN logger

The CANedge1 lets you easily record data from any CAN bus to an 8-32
GB SD card. Simply connect it to e.g. a car or truck to start logging - and
decode the data via free software/APIs. Further, the CANedge2 adds
WiFi, letting you auto-transfer data to your own server - and update
devices over-the-air.

How to decode raw CAN data to 'physical values'

https://www.csselectronics.com/products/obd2-db9-adapter-cable
https://www.csselectronics.com/pages/obd2-data-logger-sd-memory-convert
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/products/j1939-db9-adapter-cable-deutsch
https://www.csselectronics.com/pages/marine-telematics-boat-data
https://www.csselectronics.com/pages/canopen-data-logger
https://www.csselectronics.com/pages/can-bus-hardware-products
https://www.csselectronics.com/products/db9-extension-cable-can-bus
https://www.csselectronics.com/products/cancrocodile-contactless-can-adapter
https://www.csselectronics.com/products/cancrocodile-contactless-can-adapter
https://www.csselectronics.com/products/can-bus-db9-open-wire-generic
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://canlogger.csselectronics.com/canedge-getting-started/log-file-tools/
https://www.csselectronics.com/pages/mf4-mdf4-measurement-data-format
https://www.csselectronics.com/pages/mdf4-converters-mf4-asc-csv
https://www.csselectronics.com/products/can-logger-sd-canedge1
https://www.csselectronics.com/pages/can-bus-software-api-tools
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://cdn.shopify.com/s/files/1/0579/8032/1980/files/CANedge-CAN-Bus-Data-Logger_th.jpg?v=1629288722

If you review the raw CAN bus data sample above, you will probably
notice something: Raw CAN bus data is not human-readable.

To interpret it, you need to decode the CAN frames into scaled
engineering values aka physical values (km/h, degC, ...).

Below we show step-by-step how this works.

Extracting CAN signals from raw CAN frames

Each CAN frame on the bus contains a number of CAN signals (parameters) within the CAN databytes. For example, a
CAN frame with a specific CAN ID may carry data for e.g. 2 CAN signals.

To extract the physical value of a CAN signal, the following information is required:

● Bit start: Which bit the signal starts at
● Bit length: The length of the signal in bits
● Offset: Value to offset the signal value by
● Scale: Value to multiply the signal value by

To extract a CAN signal, you 'carve out' the relevant bits, take the decimal value and perform a linear scaling:
physical_value = offset + scale * raw_value_decimal

The challenge of proprietary CAN data

Most often, the CAN bus "decoding rules" are proprietary and not easily available (except to the OEM, i.e. Original
Equipment Manufacturer). There are a number of solutions to this when you're not the OEM:

● Record J1939 data: If you're logging raw data from heavy duty vehicles (trucks, tractors, ...), you're typically
recording J1939 data. This is standardized across brands - and you can use our J1939 DBC file to decode data.
See also our J1939 data logger intro

● Record OBD2/UDS data: If you need to log data from cars, you can typically request OBD2/UDS data, which is
a standardized protocol across cars. For details see our OBD2 data logger intro and our free OBD2 DBC file

● Use public DBC files: For cars, online databases exist where others have reverse engineered proprietary some
of the CAN data. We keep a list of such databases in our DBC file intro

● Reverse engineer data: You can also attempt to reverse engineer data yourself by using a CAN bus sniffer,
though it can be time consuming and difficult

● Use sensor modules: In some cases you may need sensor data that is not available on the CAN bus (or which
is difficult to reverse engineer). Here, sensor-to-CAN modules like the CANmod series can be used. You can
integrate such modules with your CAN bus, or use them as add-ons for your CAN logger to add data such as
GNSS/IMU or temperature data

● Partner with the OEM: In some cases the OEM will provide decoding rules as part of the CAN bus system
technical specs. In other cases you may be able to get the information through e.g. a partnership

https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/obd2-data-logger-sd-memory-convert
https://www.csselectronics.com/pages/obd2-dbc-file
https://www.csselectronics.com/pages/can-dbc-file-database-intro#faq
https://www.csselectronics.com/pages/can-bus-sniffer-reverse-engineering
https://www.csselectronics.com/pages/can-bus-hardware-products#sensor-to-can
https://www.csselectronics.com/products/gps-to-can-bus-gnss-imu
https://www.csselectronics.com/products/thermocouple-to-can-bus

CAN database files (DBC) - J1939 example

In some cases, conversion rules are standard across manufacturers - e.g. in the J1939 protocol for heavy-duty.
This means that you can use the J1939 parameter conversion rules on practically any heavy-duty vehicle to convert a
large share of your data. To make this practical, you need a format for storing the conversion rules. Here, the CAN
database (DBC) format is the industry standard - and is supported by most CAN bus decoder software incl. the
supporting tools for our CAN loggers, asammdf and CANvas. We also offer a low cost J1939 DBC file, which you can
purchase as a digital download. With this, you can get quickly from raw J1939 data to human-readable form. Learn
more!

Example: Decoded CAN sample data (physical values)

To illustrate how you can extract CAN signals from raw CAN data frames, we include below the previous J1939 sample
data - but now decoded via a J1939 DBC file using the asammdf GUI tool.
As evident, the result is timeseries data with parameters like oil temperature, engine speed, GPS, fuel rate and speed:

timestamps,ActualEnginePercentTorque,EngineSpeed,EngineCoolantTemperature,EngineOilTemperature1,EngineFu
elRate,EngineTotalIdleHours,FuelLevel1,Latitude,Longitude,WheelBasedVehicleSpeed
2020-01-13 16:00:13.259449959+01:00,0,1520.13,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.268850088+01:00,0,1522.88,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.270649910+01:00,0,1523.34,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.271549940+01:00,0,1523.58,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.278949976+01:00,0,1525.5,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
…

For more on logging J1939 data, see our J1939 data logger and mining telematics articles. You can also learn how to
analyze/visualize your CAN data via the free asammdf GUI tool or telematics dashboards.

What is the link between CAN, J1939, OBD2, CANopen ...?
The Controller Area Network provides the basis for communication - but not a lot more.

For example, the CAN standard does not specify how to handle messages larger than 8 bytes - or how to decode the raw
data. Therefore a set of standardized protocols exist to further specify how data is communicated between CAN nodes
of a given network.

https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/pages/can-bus-software-api-tools
https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/mining-vehicle-telematics-dashboard
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://www.csselectronics.com/pages/telematics-dashboard-open-source

Some of the most common standards include SAE J1939, OBD2 and CANopen. Further, these higher-layer protocols will
increasingly be based on the 'next generation' of CAN, CAN FD (e.g. CANopen FD and J1939-17/22).

SAE J1939
J1939 is the standard
in-vehicle network for

heavy-duty vehicles (e.g.
trucks & buses). J1939
parameters (e.g. RPM,

speed, ...) are identified by
a suspect parameter

number (SPN), which are
grouped in parameter

groups identified by a PG
number (PGN).

j1939 intro
j1939 telematics

OBD2
On-board diagnostics
(OBD, ISO 15765) is a

self-diagnostic and
reporting capability that

e.g. mechanics use to
identify car issues. OBD2

specifies diagnostic trouble
codes (DTCs) and real-time

data (e.g. speed, RPM),
which can be recorded via

OBD2 loggers.
obd2 intro

obd2 logging

CANopen
CANopen is used widely in

embedded control
applications, incl. e.g.

industrial automation. It is
based on CAN, meaning

that a CAN bus data logger
is also able to log CANopen

data. This is key in e.g.
machine diagnostics or
optimizing production.

canopen intro
canopen logger

CAN FD
CAN bus with flexible

data-rate (CAN FD) is an
extension of the Classical

CAN data link layer. It
increases the payload from
8 to 64 bytes and allows for

a higher data bit rate,
dependent on the CAN

transceiver. This enables
increasingly data-intensive

use cases like EVs.
can fd intro

can fd logger

https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/obd2-explained-simple-intro
https://www.csselectronics.com/pages/obd2-data-logger-sd-memory-convert
https://www.csselectronics.com/
https://www.csselectronics.com/pages/canopen-tutorial-simple-intro
https://www.csselectronics.com/pages/canopen-data-logger
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro
https://www.csselectronics.com/pages/can-fd-data-logger

J1939 Explained - A Simple Intro
In this guide we introduce the J1939 protocol basics incl. PGNs and SPNs. This is a practical intro so you will also learn how
to decode J1939 data via DBC files, how J1939 logging works, key use cases and practical tips.

What is J1939?
In short, SAE J1939 is a set of standards that define how ECUs communicate via the CAN bus in heavy-duty vehicles.
As explained in our CAN bus intro, most vehicles today use the Controller Area Network (CAN) for ECU communication.
However, CAN bus only provides a "basis" for communication (like a telephone) - not a "language" for conversation.

In most heavy-duty vehicles, this language is the SAE J1939 standard defined by the Society of Automotive Engineers
(SAE). In more technical terms, J1939 provides a higher layer protocol (HLP) based on CAN as the "physical layer".
What does that mean, though?

One standard across heavy-duty vehicles

In simple terms, J1939 offers a standardized method for communication across ECUs, or in other words:
J1939 provides a common language across manufacturers.
In contrast, e.g. cars use proprietary OEM specific protocols.

J1939 application examples

Heavy-duty vehicles (e.g. trucks and buses) is one of the most well-known applications. However, several other key
industries leverage SAE J1939 today either directly or via derived standards (e.g. ISO 11783, MilCAN, NMEA 2000, FMS):

● Foresting machines (e.g. delimbers, forwarders, skidders)
● Mining vehicles (e.g. bulldozers, draglines, excavators, …)
● Military vehicles (e.g. tanks, transport vehicles, …)
● Agriculture (e.g. tractors, harvesters, …)

https://en.wikipedia.org/wiki/Electronic_control_unit
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://en.wikipedia.org/wiki/CAN_bus
https://en.wikipedia.org/wiki/SAE_International
https://en.wikipedia.org/wiki/Network_layer
https://en.wikipedia.org/wiki/Original_equipment_manufacturer
https://en.wikipedia.org/wiki/ISO_11783
https://en.wikipedia.org/wiki/MilCAN
https://www.csselectronics.com/pages/marine-telematics-boat-data
https://en.wikipedia.org/wiki/Fleet_Management_System
https://en.wikipedia.org/wiki/ISO_11783
https://www.csselectronics.com/pages/mining-vehicle-telematics-dashboard
https://en.wikipedia.org/wiki/MilCAN
https://en.wikipedia.org/wiki/ISO_11783

● Construction (e.g. mobile hydraulics, cranes, …)
● Fire & Rescue (e.g. ambulances, fire trucks, …)
● Other (e.g. ships, pumping, e-buses, power generation, ...)

J1939 history & future
History

● 1994: First docs were released (J1939-11, J1939-21, J1939-31)
● 2000: The initial top level document was published
● 2000: CAN formally included as part of J1939 standard
● 2001: J1939 starts replacing former standards SAE J1708/J1587

Future

With the rise of heavy-duty telematics, J1939 will increasingly play a role in the market for connected vehicles. In turn, this
will increase the need for secure J1939 IoT loggers. In parallel, OEMs will increasingly shift from Classical CAN to CAN FD
as part of the transition to J1939 with flexible data-rate. In turn, this will increase the need for J1939 FD data loggers.

"The market for in-vehicle connectivity - the hardware and services bringing all kinds of new functionality to drivers and
fleet owners - is expected to reach EUR 120 billion by 2020."
- Boston Consulting Group, Connected Vehicles and the Road to Revenue

4 key characteristics of J1939
The J1939 protocol has a set of defining characteristics outlined below:

250K baud rate &
29-bit extended ID

The J1939 baud rate is
typically 250K (though

recently with support for
500K) - and the identifier is
extended 29-bit (CAN 2.0B)

Broadcast + on-request
data

Most J1939 messages are
broadcast on the CAN-bus,
though some data is only

available by requesting the
data via the CAN bus

PGN identifiers & SPN
parameters

J1939 messages are
identified by 18-bit

Parameter Group Numbers
(PGN), while J1939 signals

are called Suspect
Parameter Numbers (SPN)

Multibyte variables &
Multi-packets

Multibyte variables are sent
least significant byte first
(Intel byte order). PGNs

with up to 1785 bytes are
supported via J1939
transport protocol

https://en.wikipedia.org/wiki/NMEA_2000
https://www.csselectronics.com/pages/electric-vehicle-data-logger-cloud-battery-telematics
https://www.sae.org/standards/content/j1939/11_201612/
https://www.sae.org/standards/content/j1939/21_201810/
https://www.sae.org/standards/content/j1939/31_201809/
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/secure-can-bus-logging-telematics-intro
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro
https://can-newsletter.org/uploads/media/raw/788492a55a8f95287b8ea455e2f97ca2.pdf
https://www.csselectronics.com/pages/can-fd-data-logger
https://www.bcg.com/publications/2017/connected-vehicles-road-revenue.aspx

Additional J1939 characteristics

Below are a set of additional characteristics of the J1939 protocol:

● Reserved: J1939 includes a large range of standard PGNs, though PGNs 00FF00 through 00FFFF are reserved
for proprietary use

● Special Values: A data byte of 0xFF (255) reflects N/A data, while 0xFE (254) reflects an error
● J1939 address claim: The SAE J1939 standard defines a procedure for assigning source addresses to J1939

ECUs after network initialization via an 8-bit address in a dynamic way

Technical: J1939 'higher layer protocol' explained

J1939 is based on CAN, which provides the basic "physical layer" and "data link layer", the lowest layers in the OSI
model. Basically, CAN allows the communication of small packets on the CAN bus, but not a lot more than that. Here,
J1939 serves as a higher layer protocol on top, enabling more complex communication.

A higher layer protocol enables communication across the large complex networks of e.g. vehicle manufacturers.

For example, the SAE J1939 protocol specifies how to handle "multi-packet messages", i.e. when data larger than 8
bytes needs to be transferred. Similarly, it specifies how data is to be converted into human-readable data.
It does so by providing a family of standards. For example, J1939-71 is a document detailing the information required
to convert a large set of cross-manufacturer standardized J1939 messages into human-readable data (more on this
below). Many other CAN based higher layer protocols exist, e.g. CANopen, DeviceNet, Unified Diagnostic Services.
These typically offer some level of standardization within their respective industries - though all of them can be
extended by manufacturers.

In comparison, the aforementioned passenger cars have unique standards per manufacturer. In other words, you can
use the same J1939 database file to convert e.g. engine speed across two trucks from different manufacturers - but you
cannot e.g. read the data from an Audi A4 using the same IDs & scaling parameters as for a Peugeot 207.

https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Data_link_layer
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/pages/canopen-tutorial-simple-intro
https://en.wikipedia.org/wiki/DeviceNet
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services

The J1939 connector (9-pin)
The J1939-13 standard specifies the 'off-board diagnostic connector' - also known as the J1939 connector or 9-pin deutsch
connector. This is a standardized method for interfacing with the J1939 network of most heavy duty vehicles - see the
illustration for the J1939 connector pinout.

Black type 1 vs green type 2

Note that the J1939 deutsch connector comes in two variants: The original black connector (type 1) and the newer green
connector (type 2), which started getting rolled out around 2013-14.

J1939 type 2 female connectors are physically backwards
compatible, while type 1 female connectors only fit type 1
male sockets. The type 2 connector was designed for the
SAE J1939-14 standard, which adds support for 500K bit
rates. The purpose of "blocking" type 1 connectors is to
ensure that older hardware (presumably using 250K bit
rates) is not connected to type 2 500K bit rate J1939
networks. Specifically, the physical block is through a
smaller hole for pin F in the type 2 male connectors. See
also the example of a DB9-J1939 adapter cable (type 2).

https://www.csselectronics.com/products/j1939-db9-adapter-cable-deutsch

Multiple J1939 networks

As evident, the J1939 deutsch connector provides access to the J1939 network through pins C (CAN high) and D (CAN
low). This makes it easy to interface with the J1939 network across most heavy duty vehicles.

In some cases, however, you may also be able to access a secondary J1939 network through pins F and G or pins H and
J (with H being CAN H and J being CAN L).

Many of today's heavy duty vehicles have 2 or more parallel CAN bus networks and in some cases at least two of these
will be available through the same J1939 connector. This also means that you will not necessarily have gained access to
all the available J1939 data if you've only attempted to interface through the 'standard' pins C and D.

Other heavy duty connectors

While the J1939 deutsch connector is the most common way to interface with the J1939 network of heavy duty vehicles,
other connectors of course exist. Below are some examples:

● J1939 Backbone Connector: This 3-pin deutsch connector provides pins for CAN H/L a CAN shield (no
power/ground)

● CAT connector: The Caterpillar industrial connector is a grey 9-pin deutsch connector. However, the pin-out
differs from the J1939 connector (A: Power, B: Ground, F: CAN L, G: CAN H) and the connector physically blocks
access from standard type 1 and 2 J1939 connectors

● OBD2 type B connector: The type B OBD2 connector (SAE J1962) in heavy duty vehicles sometimes provide
direct access to the J1939 network through pins 6 and 14

● Volvo 2013 OBD2 connector: This variant matches the type B OBD2 connector, but also adds access to the
J1939 high via pin 3 and J1939 low via pin 11

The J1939 PGN and SPN
In the following section we explain the J1939 PGNs and SPNs.

Parameter Group Number (PGN)

The J1939 PGN comprises an 18-bit subset of the 29-bit extended CAN ID. In simple terms, the PGN serves as a unique
frame identifier within the J1939 standard. For example, you can look this up in the J1939-71 standard documentation,
which lists PGNs/SPNs.

https://www.csselectronics.com/products/caterpillar-db9-9-pin-adapter-cable#void
https://www.csselectronics.com/pages/obd2-explained-simple-intro#obd2-connector
https://standards.sae.org/j1939/71_201610/

Example: J1939 PGN 61444 (EEC1)

Assume you recorded a J1939 message with HEX ID 0CF00401. Here, the PGN starts at bit 9, with length 18 (indexed from
1). The resulting PGN is 0F004 or in decimal 61444. Looking this up in the SAE J1939-71 documentation, you will find that it
is the "Electronic Engine Controller 1 - EEC1". Further, the document will have details on the PGN including priority,
transmission rate and a list of the associated SPNs - cf. the illustration. For this PGN, there are seven SPNs (e.g. Engine
Speed, RPM), each of which can be looked up in the J1939-71 documentation for further details.

Detailed breakdown of the J1939 PGN

Let's look at the CAN ID to PGN transition in detail. Specifically, the 29 bit CAN ID comprises the Priority (3 bits), the J1939
PGN (18 bits) and the Source Address (8 bits). In turn, the PGN can be split into the Reserved Bit (1 bit), Data Page (1 bit),
PDU format (8 bit) and PDU Specific (8 bit).

The detailed PGN illustration also includes example values for each field in binary, decimal and hexadecimal form.

To learn more about the transition from 29 bit CAN ID to 18 bit J1939 PGN, see also our online CAN ID to J1939 PGN
converter. The converter also includes a full J1939 PGN list for PGNs included in our J1939 DBC file.

https://www.csselectronics.com/pages/j1939-pgn-conversion-tool
https://www.csselectronics.com/pages/j1939-pgn-conversion-tool
https://www.csselectronics.com/products/j1939-dbc-file

Suspect Parameter Number (SPN)

The J1939 SPN serves as the identifier for the CAN signals (parameters) contained in the databytes. SPNs are grouped by
PGNs and can be described in terms of their bit start position, bit length, scale, offset and unit - information required to
extract and scale the SPN data to physical values.

Example: Extracting J1939 SPN 190 (Engine Speed)

Assume you have recorded a raw J1939 frame as below:

CAN ID Data bytes

0CF00401 FF FF FF 68 13 FF FF FF

By converting the CAN ID to the J1939 PGN you identify that this is the PGN 61444 from before. From the J1939-71
document, you observe that one of the SPNs within this PGN is Engine Speed (SPN 190) with details as in the
illustration below.

Using these details, it is possible to extract the Engine Speed physical value data e.g. for plot purposes. To do so, note
from the SPN info that the relevant data is in bytes 4 and 5, i.e. the HEX data bytes 68 and 13. Taking the decimal form
of the HEX value 1368 (Intel byte order), we get 4968 in decimal. To arrive at the RPM, we conduct a scaling of this value
using the offset 0 and the scale 0.125 RPM/bit. The physical value (aka scaled engineering value) is 621 RPM.

Note how some data bytes in the above are FF or 255 decimal, i.e. not available. While the PGN may theoretically
support SPNs in this range, the FF padding means that this particular application does not support these parameters.

https://www.csselectronics.com/products/j1939-dbc-file

In practice, you will not ‘PDF-lookup’ rules for J1939 data - instead, this info is stored in a CAN database file (DBC).

Example: J1939 DBC file

A J1939 DBC file can be used to decode data across most heavy-duty vehicles. For example, raw J1939 data can be
recorded with a CAN bus data logger and analyzed in a CAN software tool that supports DBC conversion (e.g. asammdf).
This will typically result in a conversion of 40-60% of the vehicle data - with the rest being OEM specific proprietary data
that requires reverse engineering.

J1939 truck sample data: Raw & physical values
Below we illustrate what real J1939 data looks like. The 'raw' J1939 data was recorded from a heavy duty truck using a
CANedge2, while the 'physical values' reflect the output after decoding the raw data via the free asammdf software and
the J1939 DBC.

https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.csselectronics.com/pages/can-bus-hardware-products
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://www.csselectronics.com/pages/can-bus-sniffer-reverse-engineering
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://www.csselectronics.com/products/j1939-dbc-file

Sample: Raw J1939 truck data (CSV)

Data from the CANedge is recorded in a standardized binary format, MDF4, which can be converted to any file format
via our MDF4 converters (e.g. to CSV, ASC, TRC, ...). Below is a CSV version of the raw J1939 frames. Notice that the CAN
IDs and data bytes are in hexadecimal format:

TimestampEpoch;BusChannel;ID;IDE;DLC;DataLength;Dir;EDL;BRS;DataBytes
1578922367.777150;1;14FEF131;1;8;8;0;0;0;CFFFFFF300FFFF30
1578922367.777750;1;10F01A01;1;8;8;0;0;0;2448FFFFFFFFFFFF
1578922367.778300;1;CF00400;1;8;8;0;0;0;107D82BD1200F482
1578922367.778900;1;14FF0121;1;8;8;0;0;0;FFFFFFFFFFFFFCFF
1578922367.779500;1;18F0000F;1;8;8;0;0;0;007DFFFF0F7DFFFF
1578922367.780050;1;18FFA03D;1;8;8;0;0;0;2228240019001AFF
1578922367.780600;1;10FCFD01;1;8;8;0;0;0;FFFFFFFF1623FFFF
1578922367.781200;1;18FD9401;1;8;8;0;0;0;A835FFFFA9168F03
1578922367.781750;1;18FDA101;1;8;8;0;0;0;1224FFFFFFFF00FF
1578922367.782350;1;18F00E3D;1;8;8;0;0;0;741DFFFFFFFFFFFF
1578922367.782950;1;18F00F3D;1;8;8;0;0;0;B40FFFFFFFFFFFFF
1578922367.783500;1;10FDA301;1;8;8;0;0;0;FFFFFFFFFFFFFFFF
…

You can optionally download full raw J1939 MDF4 samples from the CANedge2 in our intro docs. The sample data also
includes a demo J1939 DBC so that you can replicate the conversion steps via asammdf.

Sample: Decoded physical values J1939 truck data (CSV)

Once the raw J1939 data is decoded and exported, the result is timeseries data with parameters like oil temperature,
engine speed, GPS, fuel rate and speed:

timestamps,ActualEnginePercentTorque,EngineSpeed,EngineCoolantTemperature,EngineOilTemperature1,EngineFu
elRate,EngineTotalIdleHours,FuelLevel1,Latitude,Longitude,WheelBasedVehicleSpeed
2020-01-13 16:00:13.259449959+01:00,0,1520.13,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.268850088+01:00,0,1522.88,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.270649910+01:00,0,1523.34,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.271549940+01:00,0,1523.58,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.278949976+01:00,0,1525.5,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.289050102+01:00,0,1527.88,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.299000025+01:00,0,1528.13,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.308300018+01:00,0,1526.86,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.309099913+01:00,0,1526.75,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.317199945+01:00,0,1526.45,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
…

For more on logging J1939 data, see our J1939 data logger and mining telematics articles.

About the CANedge J1939 logger

The CANedge lets you easily record J1939 data to an 8-32 GB SD card. Simply connect it to e.g. a truck to start logging -
and decode the data via free software/APIs and our J1939 DBC. Learn more.

J1939 request messages
Most J1939 messages are broadcast via the CAN bus, but some are only sent "on-request" (e.g. when polled by a J1939
data logger). On-request data often includes J1939 diagnostic trouble codes (DTCs), making it important in vehicle
diagnostics. Below we briefly outline how it works:

https://www.csselectronics.com/pages/mf4-mdf4-measurement-data-format
https://www.csselectronics.com/pages/mdf4-converters-mf4-asc-csv
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://canlogger.csselectronics.com/canedge-getting-started/log-file-tools/
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/mining-vehicle-telematics-dashboard
https://www.csselectronics.com/pages/can-bus-hardware-products
https://www.csselectronics.com/pages/can-bus-software-api-tools
https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management

Sending J1939 request messages

To send a J1939 request via the CAN bus, a special 'request message' is used (PGN 59904), which is the only J1939
message with only 3 bytes of data. It has priority 6, a variable transmit rate and can either be sent as a global or specific
address request. The data bytes 1-3 should contain the requested PGN (Intel byte order). Examples of requested J1939
messages include the diagnostic messages (e.g. J1939 DM2).

A CAN bus data logger like the CANedge can be set up to send J1939 request messages - see e.g. our CANedge Intro for
a detailed step-by-step guide.

J1939 code requests vs warranty compliance
Sending request messages is typically key to requesting J1939 codes and thus J1939 diagnostics. One challenge,
however, is that J1939 loggers are often required to have a contactless connection to the J1939 data link, meaning that
they're unable to interact with the CAN bus and transmit J1939 request frames. The restriction is often related to
warranty compliance as some vehicle manufacturers do not allow direct access by 3rd party devices via the J1939
connector.

In some cases, it is required that the J1939 analyzer is "physically" contactless, e.g. via a CANcrocodile adapter. In other
cases, it is sufficient that the J1939 logger operates in "configurable" silent mode. The latter makes it easier to perform
ad hoc requests for J1939 fault codes, either via a manual configuration update or via an over-the-air update for the
CANedge2.

J1939 transport protocol (TP)
The previous PGN and SPN examples are based on J1939 messages with 8 data bytes. While these are most common,
J1939 multi-frame messages also exist with >8 data bytes - sent via the J1939 transport protocol.

Below we outline how the J1939 transport protocol works, a practical J1939 TP data example and how to decode
multi-frame J1939 messages via DBC files:

https://www.csselectronics.com/pages/can-bus-hardware-products
https://www.csselectronics.com/pages/can-bus-hardware-software-docs
https://www.csselectronics.com/products/cancrocodile-contactless-can-adapter
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2

How does the J1939 transport protocol work?

The J1939 protocol specifies how to deconstruct, transfer and reassemble packets across multiple frames - a process
referred to as the J1939 Transport Protocol (see J1939-21). Two types of the J1939 TP exist:

1. The Connection Mode (intended for a specific device)
2. The BAM (Broadcast Announce Message) which is intended for the entire network

For example, a transmitting ECU may send an initial BAM packet to set up a data transfer. The BAM specifies the PGN
identifier for the multi-packet message as well as the number of data bytes and packets to be sent. It is then followed
by up to 255 packets/frames of data. Each of the 255 packets use the first data byte to specify the sequence number (1
up to 255), followed by 7 bytes of data. The max number of bytes per multi-packet message is therefore 7 bytes x 255 =
1785 bytes.

The final packet contains at least one byte of data, followed by unused bytes set to FF. In the BAM type scenario, the
time between messages is 50-200 ms. In post processing, a conversion software tool can reassemble the multiple
entries of 7 data bytes into a single payload and handle it according to the multi-packet PGN and SPN specifications as
found in e.g. a J1939 DBC file.

A practical J1939 transport protocol example

Decoding J1939 multiframe data is more complex than decoding standard J1939 frames. To understand why, consider the
below example of a J1939 transport protocol response, recorded with the CANedge2:

TimestampEpoch;BusChannel;ID;IDE;DLC;DataLength;Dir;EDL;BRS;DataBytes
1605078459.438750;1;1CECFF00;1;8;8;0;0;0;20270006FFE3FE00
1605078459.498750;1;1CEBFF00;1;8;8;0;0;0;013011B2A041B240
1605078459.559750;1;1CEBFF00;1;8;8;0;0;0;021FB2102CB2603B
1605078459.618750;1;1CEBFF00;1;8;8;0;0;0;03B230430000D309
1605078459.678750;1;1CEBFF00;1;8;8;0;0;0;04C0441E37967DE1
1605078459.738750;1;1CEBFF00;1;8;8;0;0;0;05E02E7B02FFFF80
1605078459.799850;1;1CEBFF00;1;8;8;0;0;0;06E0FFFFFFFFFFFF

The above sequence consists of two J1939 message types:

https://www.sae.org/standards/content/j1939/21_201810/
https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2

A J1939 BAM message with ID 1CECFF00 (PGN 60416 or EC00), which contains the response data length and J1939 PGN -
and a J1939 data transfer messages with ID 1CEBFF00 (PGN 60160 or EB00). These contain the payload across multiple
frames.

Below we break down the J1939 transport protocol example with focus on the data byte interpretation:

Generally, a J1939 transport protocol response sequence can be processed as follows:

● Identify the BAM frame, indicating a new sequence being initiated (via the PGN 60416)
● Extract the J1939 PGN from bytes 6-8 of the BAM payload to use as the identifier of the new frame
● Construct the new data payload by concatenating bytes 2-8 of the data transfer frames (i.e. excl. the 1st byte)

Above, the last 3 bytes of the BAM equal E3FE00. When reordered, these equal the PGN FEE3 aka Engine Configuration 1
(EC1). Further, the payload is found by combining the the first 39 bytes across the 6 data transfer packets/frames.
Note: The last 3 data payload bytes in this practical example happen to be FF, yet we still include these in the payload as
the BAM message specifies the data length to be 39. The final 3 FF bytes in the 6th packet are unused.

How to decode a J1939 transport protocol message

With the method explained above, we have created a 'constructed' J1939 data frame with a data length exceeding 8
bytes. This frame can be decoded using a J1939 DBC file, just like a regular J1939 data frame. For the PGN EC1, the
J1939 DBC specifies a data length of 40 with signals defined for the full payload.

As such, once the J1939 software/API has reconstructed the multiframe response into a single J1939 frame, the DBC
decoding can be done as usual. One minor tweak is that most J1939 DBC files expects that the raw log file of J1939 data
will contain 29-bit CAN IDs (not 18-bit J1939 PGNs). As such, if the software embeds the reconstructed J1939 TP frame
in the original raw data, it may need to convert the extracted J1939 PGN into a 29-bit CAN ID first. You can also see our
J1939 google sheet, which breaks down how a J1939 PGN can be converted to a 29-bit CAN ID.

J1939 TP data & Python API decoding
The CANedge lets you request and record J1939 transport protocol data. To decode the TP data, you can either convert
the raw log files to another format (like Vector ASC), or you can use our Python API. In our api-examples library on
github, we provide a basic example of how J1939 transport protocol data can be reconstructed and DBC decoded, incl.

https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/pages/python-can-bus-api
https://github.com/CSS-Electronics/api-examples

sample data. Since the CANedge Python API enables decoding of J1939 transport protocol data, J1939 signals from
multiframe messages can e.g. be visualized in J1939 telematics dashboards.

Logging J1939 data - example use cases
There are several common use cases for recording J1939 data:

Heavy duty fleet
telematics

J1939 data from trucks,
buses, tractors etc. can be
used in fleet management
to reduce costs or improve

safety
learn more

Live stream
diagnostics

By streaming decoded
J1939 data to a PC,

technicians can perform
real-time J1939 diagnostics

on vehicles
learn more

Predictive
maintenance

Vehicles can be monitored
via WiFi CAN loggers in the

cloud to predict
breakdowns based on the

J1939 data
learn more

Heavy-duty vehicle
blackbox

A CAN logger can serve as a
'blackbox' for heavy-duty

vehicles, providing data for
e.g. disputes or J1939

diagnostics
learn more

6 practical tips for J1939 data logging
Many of our end users work with J1939 logging in the field - and below we share 6 practical logging tips:

J1939 logger vs J1939 streaming interface

Standalone J1939 data loggers with SD cards are ideal for logging data from e.g. vehicle fleets over weeks or months. A
WiFi J1939 logger also enables telematics use cases. In contrast, a J1939 USB-PC interface requires a PC to stream data
from the CAN bus in real-time. This is e.g. useful for diagnostic purposes - or analysing physical events. The CLX000
enables both modes of operation, while the CANedge2 is perfect for telematics.

Direct adapter cable vs contactless reading

To connect your CAN analyzer to a J1939 asset (e.g. a truck) you can typically use the 9-pin J1939 connector. We offer a
DB9-J1939 adapter which fits the 9-pin deutsch connector found in many heavy duty vehicles. Alternatively, you may
prefer to connect your CAN logger directly to the CAN bus via e.g. a CANCrocodile. This method uses induction to
record data silently without cutting any CAN wiring.

WiFi vs. cellular (3G/4G) data upload

For vehicle fleet management & telematics you will typically upload the data via either WiFi or 3G/4G. The CANedge2
lets you transfer data by connecting to a WiFi access point - which can both be a WLAN router or a 3G/4G hotspot. If
you need data from a truck on-the-road, you can install the CANedge2 and use it to power a 3G/4G USB hotspot. The
benefit to this is that you'll have continuous access to the device - unless it is out-of-coverage. However, in cases where

https://www.csselectronics.com/pages/python-can-bus-api
https://canlogger1000.csselectronics.com/img/J1939-vehicle-telematics.svg
https://canlogger1000.csselectronics.com/img/J1939-DBC-streaming-real-time-CLX000.svg
https://canlogger1000.csselectronics.com/img/j1939-predictive-maintenance-heavy-duty-iot.svg
https://canlogger1000.csselectronics.com/img/CAN-bus-data-logger-blackbox.svg
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/can-bus-wireshark-dbc-file
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/pages/predictive-maintenance-can-bus-iot
https://www.csselectronics.com/products/can-logger-sd-canedge1
https://www.csselectronics.com/pages/black-box-can-bus-logger
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/can-bus-to-usb-wireshark
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/products/cellular-3g-4g-usb-wifi-router

data only needs to be periodically uploaded an alternative can be to upload data via WLAN routers when the vehicles
visit e.g. specific areas (garages, repair shops etc) - letting you reduce data transfer costs.

Software selection & J1939 DBC file

When logging or streaming J1939 data, software for post processing is key. In particular, the software should support
DBC-based J1939 conversion to allow easy conversion to human-readable data. The free supporting softwares/APIs for
our CAN loggers support this. For USB streaming, our free Wireshark plugin enables live DBC conversion. Further, we
offer a digital download J1939 DBC file in collaboration with SAE.

Consider the need for request PGNs

Some J1939 PGNs are only available on-request, meaning that you need to "poll" the CAN bus to log these. The
CANedge and CLX000 are able to transmit custom CAN messages, which can be used to send periodic PGN requests.
Note that this is not possible in "silent mode" (i.e. it is not possible if the logger is connected via e.g. a CANCrocodile).

Filter, compress and encrypt the data

To optimize your J1939 data logging, a number of advanced configurations can be helpful. In particular, the CANedge
advanced filters and sampling rate options help optimize the amount of data logged - key for e.g. minimizing cellular
bandwidth usage. Other options include silent mode and cyclical logging, with the latter enabling the logger to always
prioritize the latest data (useful in e.g. blackbox logging).

Since J1939 is standardized, it is critical to encrypt your data 'at rest' (e.g. on an SD card) and 'in transit' (during upload).
Not doing so exposes your data processing to various security risks, incl. GDPR/CCPA fines and loss of confidentiality
and data integrity. For details on securing your J1939 data logging, see our intro to secure CAN logging.

https://www.csselectronics.com/pages/can-bus-software-api-tools
https://www.csselectronics.com/pages/can-bus-wireshark-dbc-file
https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/pages/secure-can-bus-logging-telematics-intro

OBD2 Explained - A Simple Intro
In this guide we introduce the On Board Diagnostic (OBD2) protocol incl. the OBD2 connector, OBD2 parameter IDs (PID)
and the link to CAN bus. This is a practical intro so you will also learn how to request and decode OBD2 data, key logging
use cases and practical tips.

What is OBD2?
In short, OBD2 is your vehicle's built-in self-diagnostic system. You've probably encountered OBD2 already: Ever noticed
the malfunction indicator light on your dashboard? That is your car telling you there is an issue. If you visit a mechanic, he
will use an OBD2 scanner to diagnose the issue. To do so, he will connect the OBD2 reader to the OBD2 16 pin connector
near the steering wheel. This lets him read OBD2 codes aka Diagnostic Trouble Codes (DTCs) to review and troubleshoot
the issue.

https://en.wikipedia.org/wiki/Check_engine_light
https://en.wikipedia.org/wiki/Data_link_connector_(automotive)

The OBD2 connector
The OBD2 connector lets you access data from your car easily. The standard SAE J1962 specifies two female OBD2 16-pin
connector types (A & B). In the illustration is an example of a Type A OBD2 pin connector (also sometimes referred to as
the Data Link Connector, DLC).

A few things to note:

● The OBD2 connector is near your steering wheel, but may be hidden behind covers/panels
● Pin 16 supplies battery power (often while the ignition is off)
● The OBD2 pinout depends on the communication protocol
● The most common protocol is CAN (via ISO 15765), meaning that pins 6 (CAN-H) and 14 (CAN-L) will typically be

connected

OBD2 connector - type A vs. B

In practice, you may encounter both the type A and type B OBD2 connector. Typically, type A will be found in cars, while
type B is common in medium and heavy duty vehicles.

https://www.outilsobdfacile.com/location-plug-connector-obd/Peugeot-207

Type A & B connector differences

As evident from the illustration, the two types share similar OBD2 pinouts, but provide two different power supply
outputs (12V for type A and 24V for type B). Often the baud rate will differ as well, with cars typically using 500K, while
most heavy duty vehicles use 250K (more recently with support for 500K).

To help physically distinguish between the two types of OBD2 sockets, note that the type B OBD2 connector has an
interrupted groove in the middle. As a result, a type B OBD2 adapter cable will be compatible with both types A and B,
while a type A will not fit into a type B socket.

Does my car have OBD2?
In short: Probably! Almost all newer cars support OBD2 and most run on CAN (ISO 15765). For older cars, be aware that
even if a 16 pin OBD2 connector is present, it may still not support OBD2. One way to determine compliance is to identify
where & when it was bought new:

Link between OBD2 and CAN bus
On board diagnostics, OBD2, is a 'higher layer protocol' (like a language). CAN is a method for communication (like a

phone). In particular, the OBD2 standard specifies the OBD2 connector, incl. a set of five protocols that it can run on (see
below). Further, since 2008, CAN bus (ISO 15765) has been the mandatory protocol for OBD2 in all cars sold in the US.

What is the ISO 15765 standard?

ISO 15765 refers to a set of restrictions applied to the CAN
standard (which is itself defined in ISO 11898). One might
say that ISO 15765 is like "CAN for cars". In particular, ISO
15765-4 describes the physical, data link layer and
network layers, seeking to standardize the CAN bus
interface for external test equipment.

ISO 15765-2 in turn describes the transport layer (ISO TP)
for sending CAN frames with payloads that exceed 8
bytes. This sub standard is also sometimes referred to as
Diagnostic Communication over CAN (or DoCAN). See also
the 7 layer OSI model illustration. OBD2 can also be
compared to other higher layer protocols (e.g. J1939,
CANopen).

https://www.csselectronics.com/products/obd2-db9-adapter-cable
https://www.scantool.net/blog/how-do-i-know-whether-my-car-is-obd-ii-compliant/
https://en.wikipedia.org/wiki/Network_layer
https://en.wikipedia.org/wiki/ISO_15765-2
https://en.wikipedia.org/wiki/CAN_bus
https://www.kanda.com/blog/microcontrollers/bus/
https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/pages/canopen-tutorial-simple-intro

The five OBD2 protocols

As explained above, CAN bus today serves as the basis for OBD2 communication in the vast majority of cars through ISO
15765. However, if you're inspecting an older car (pre 2008), it is useful to know the other four protocols that have been
used as basis for OBD2. Note also the pinouts, which can be used to determine which protocol may be used in your car.

● ISO 15765 (CAN bus): Mandatory in US cars since 2008 and is today used in the vast majority of cars
● ISO14230-4 (KWP2000): The Keyword Protocol 2000 was a common protocol for 2003+ cars in e.g. Asia
● ISO9141-2: Used in EU, Chrysler & Asian cars in 2000-04
● SAE J1850 (VPW): Used mostly in older GM cars
● SAE J1850 (PWM): Used mostly in older Ford cars

OBD2 history & future
History

OBD2 originates from California where the California Air Resources Board (CARB) required OBD in all new cars from
1991+ for emission control purposes. The OBD2 standard was recommended by the Society of Automotive Engineers
(SAE) and standardized DTCs and the OBD connector across manufacturers (SAE J1962). From there, the OBD2 standard
was rolled out step-by-step:

● 1996: OBD2 made mandatory in USA for cars/light trucks
● 2001: Required in EU for gasoline cars
● 2003: Required in EU also for diesel cars (EOBD)
● 2005: OBD2 was required in US for medium duty vehicles
● 2008: US cars must use ISO 15765-4 (CAN) as OBD2 basis
● 2010: Finally, OBD2 was required in US heavy duty vehicles

https://en.wikipedia.org/wiki/California_Air_Resources_Board
https://en.wikipedia.org/wiki/SAE_International
https://standards.sae.org/j1962_201207/
https://en.wikipedia.org/wiki/Light_truck
https://en.wikipedia.org/wiki/Truck_classification
https://www.iso.org/standard/67245.html

Future

OBD2 is here to stay - but in what form? Two potential routes may radically change OBD2:

OBD3/OBD-III - wireless emission testing

In today's world of connected cars, OBD2 tests can seem cumbersome: Manually doing emission control checks is
time-consuming and expensive. The solution? OBD3 - adding telematics to all cars. Basically, OBD3 adds a small radio
transponder (as in e.g. bridge tolls) to all cars. Using this, the car vehicle identification number (VIN) and DTCs can be
sent via WiFi to a central server for checks.

Many devices today already facilitate transfer of CAN or OBD2 data via WiFi/cellular - e.g. the CANedge2 WiFi CAN
logger. This saves cost and is convenient, but it is also politically a challenge due to surveillance concerns.

Eliminating 3rd party OBD2 services

The OBD2 protocol was originally designed for stationary emission controls. Yet, today OBD2 is used extensively for
generating real-time data by 3rd parties - via OBD2 dongles, CAN loggers etc. However, the German car industry is
looking to change this:

“OBD has been designed to service cars in repair shops. In no way has it been intended to allow third parties to build
a form of data-driven economy on the access through this interface"

- Christoph Grote, SVP Electronics, BMW (2017)
The proposal is to "turn off" the OBD2 functionality while driving - and instead collect the data in a central server. This
would effectively put the manufacturers in control of the automotive 'big data'. The argumentation is based in security
(e.g. removing the risk of car hacking), though many see it as a commercial move. Whether this becomes a real trend is
to be seen - but it may truly disrupt the market for OBD2 3rd party services.

https://en.wikipedia.org/wiki/Vehicle_identification_number
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/pages/obd2-data-logger-sd-memory-convert
https://www.csselectronics.com/
https://www.eenewsautomotive.com/news/german-car-industry-plans-close-obd-interface?news_id=93237
https://www.eenewsautomotive.com/news/german-car-industry-plans-close-obd-interface?news_id=93237
https://www.csselectronics.com/pages/secure-can-bus-logging-telematics-intro
https://www.navixy.com/blog/obd-trackers-what-future-awaits/

OBD2 parameter IDs (PID)
Why should you care about OBD2 data? Mechanics obviously care
about OBD2 DTCs (maybe you do too), while regulatory entities
need OBD2 to control emission. But the OBD2 protocol also
supports a broad range of standard parameter IDs (PIDs) that can
be logged across most cars.

This means that you can easily get human-readable OBD2 data
from your car on speed, RPM, throttle position and more. In other
words, OBD2 lets you analyze data from you car easily - in contrast
to the OEM specific proprietary raw CAN data.

Decoding OBD2 vs CAN bus data

In principle it is simple to log the raw CAN frames from your car. If you e.g. connect a CAN logger to the OBD2
connector, you'll start logging broadcasted CAN bus data out-the-box. However, the raw CAN messages need to be
decoded via a database of conversion rules (DBC) and a suitable CAN software that supports DBC decoding (like e.g.
asammdf). The challenge is that these CAN DBC files are typically proprietary, making the raw CAN data unreadable
unless you're the automotive OEM.

Car hackers may try to reverse engineer the rules, though this can be difficult. CAN is, however, still the only method to
get "full access" to your car data - while OBD2 only provides access to a limited subset of data.

How to log OBD2 data?
OBD2 data logging works as follows:

● You connect an OBD2 logger to the OBD2 connector
● Using the tool, you send 'request frames' via CAN
● The relevant ECUs send 'response frames' via CAN
● Decode the raw OBD2 responses via e.g. an OBD2 DBC

In other words, a CAN logger that is able to transmit custom CAN frames can also be used as an OBD2 logger.
Note that cars differ by model/year in what OBD2 PIDs they support. For details, see our OBD2 data logger guide.

https://www.csselectronics.com/pages/obd2-data-logger-sd-memory-convert
https://www.csselectronics.com/
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://www.csselectronics.com/pages/can-bus-sniffer-reverse-engineering
https://www.csselectronics.com/pages/obd2-data-logger-sd-memory-convert
https://www.csselectronics.com/pages/obd2-dbc-file
https://www.csselectronics.com/
https://www.csselectronics.com/pages/obd2-data-logger-sd-memory-convert

CANedge OBD2 data logger

The CANedge lets you easily log OBD2 data to an 8-32 GB SD card. Simply specify what OBD2 PIDs you wish to request,
then connect it to your car via an OBD2 adapter to start logging. Process the data via free software/APIs and our OBD2
DBC.

Raw OBD2 frame details
To get started recording OBD2 data, it is helpful to understand the basics of the raw OBD2 message structure. In
simplified terms, an OBD2 message consists of an identifier and data. Further, the data is split in Mode, PID and data
bytes (A, B, C, D) as below.

OBD2 message fields explained

● Identifier: For OBD2 messages, the identifier is standard 11-bit and used to distinguish between "request
messages" (ID 7DF) and "response messages" (ID 7E8 to 7EF). Note that 7E8 will typically be where the main
engine or ECU responds at.

● Length: This simply reflects the length in number of bytes of the remaining data (03 to 06). For the Vehicle
Speed example, it is 02 for the request (since only 01 and 0D follow), while for the response it is 03 as both 41,
0D and 32 follow.

● Mode: For requests, this will be between 01-0A. For responses the 0 is replaced by 4 (i.e. 41, 42, … , 4A). There
are 10 modes as described in the SAE J1979 OBD2 standard. Mode 1 shows Current Data and is e.g. used for
looking at real-time vehicle speed, RPM etc. Other modes are used to e.g. show or clear stored diagnostic
trouble codes and show freeze frame data.

https://www.csselectronics.com/pages/can-bus-hardware-products
https://www.csselectronics.com/products/obd2-db9-adapter-cable
https://www.csselectronics.com/pages/can-bus-software-api-tools
https://www.csselectronics.com/pages/obd2-dbc-file
https://www.csselectronics.com/pages/obd2-dbc-file

● PID: For each mode, a list of standard OBD2 PIDs exist - e.g. in Mode 01, PID 0D is Vehicle Speed. For the full
list, check out our OBD2 PID overview. Each PID has a description and some have a specified min/max and
conversion formula. The formula for speed is e.g. simply A, meaning that the A data byte (which is in HEX) is
converted to decimal to get the km/h converted value (i.e. 32 becomes 50 km/h above). For e.g. RPM (PID 0C),
the formula is (256*A + B) / 4.

● A, B, C, D: These are the data bytes in HEX, which need to be converted to decimal form before they are used
in the PID formula calculations. Note that the last data byte (after Dh) is not used.

OBD2 request/response example

An example of a request/response CAN message for the
PID 'Vehicle Speed' with a value of 50 km/h can be seen in
the illustration. Note in particular how the formula for the
OBD2 PID 0D (Vehicle Speed) simply involves taking the
4th byte (0x32) and converting it to decimal form (50).

Extended OBD2 PID request/response

In some vehicles (e.g. vans and light/medium/heavy duty vehicles), you may find that the raw CAN data uses extended
29-bit CAN identifiers instead of 11-bit CAN identifiers.

In this case, you will typically need to modify the OBD2 PID requests to use the CAN ID 18DB33F1 instead of 7DF. The
data payload structure is kept identical to the examples for 11-bit CAN IDs.

If the vehicle responds to the requests, you'll typically see responses with CAN IDs 18DAF100 to 18DAF1FF (in practice,
typically 18DAF110 and 18DAF11E). The response identifier is also sometimes shown in the 'J1939 PGN' form,
specifically the PGN 0xDA00 (55808), which in the J1939-71 standard is marked as 'Reserved for ISO 15765-2'.

We provide an OBD2 DBC file for both the 11-bit and 29-bit responses, enabling simple decoding of the data in most
CAN software tools.

The 10 OBD2 services (aka modes)

There are 10 OBD2 diagnostic services (or modes) as
described in the SAE J1979 OBD2 standard. Mode 1 shows
Current Data and is used for looking at real-time
parameters like vehicle speed, RPM, throttle position etc.
Other modes are e.g. used to show/clear diagnostic
trouble codes (DTCs) and show freeze frame data.
Manufacturers do not have to support all diagnostic
services - and they may support modes outside these 10
services (i.e. manufacturer specific OBD2 services).

OBD2 data logging - use case examples
OBD2 data from cars and light trucks can be used in various use cases:

https://www.csselectronics.com/pages/obd2-pid-table-on-board-diagnostics-j1979
https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/pages/obd2-dbc-file

Logging data from cars
OBD2 data from cars can

e.g. be used to reduce fuel
costs, improve driving, test

prototype parts and
insurance

learn more

Real-time car diagnostics
OBD2 interfaces can be

used to stream
human-readable OBD2

data in real-time, e.g. for
diagnosing vehicle issues

learn more

Predictive maintenance
Cars and light trucks can be

monitored via IoT OBD2
loggers in the cloud to

predict and avoid
breakdowns
learn more

Vehicle blackbox logger
An OBD2 logger can serve
as a 'blackbox' for vehicles
or equipment, providing
data for e.g. disputes or

diagnostics
learn more

https://canlogger1000.csselectronics.com/img/OBD2-data-logger-car-vehicle.svg
https://canlogger1000.csselectronics.com/img/OBD2-real-time-streaming-via-USB.svg
https://canlogger1000.csselectronics.com/img/OBD2-data-predictive-maintenance-telematics.svg
https://canlogger1000.csselectronics.com/img/CAN-bus-data-logger-blackbox.svg
https://www.csselectronics.com/pages/obd2-data-logger-sd-memory-convert
https://www.csselectronics.com/pages/can-bus-to-usb-wireshark
https://www.csselectronics.com/pages/predictive-maintenance-can-bus-iot
https://www.csselectronics.com/pages/black-box-can-bus-logger

UDS Explained (Unified Diagnostic Services)
In this practical tutorial, we introduce the UDS basics with focus on UDS on CAN bus (UDSonCAN) and Diagnostics over
CAN (DoCAN). We also introduce the ISO-TP protocol and explain the difference between UDS, OBD2, WWH-OBD and
OBDonUDS. Finally, we'll explain how to request, record & decode UDS messages - with practical examples for logging EV
State of Charge and the Vehicle Identification Number (VIN).

What is the UDS protocol?
Unified Diagnostic Services (UDS) is a communication protocol used in automotive Electronic Control Units (ECUs) to
enable diagnostics, firmware updates, routine testing and more.

The UDS protocol (ISO 14229) is standardized across both manufacturers and standards (such as CAN, KWP 2000,
Ethernet, LIN). Further, UDS is today used in ECUs across all tier 1 Original Equipment Manufacturers (OEMs).

In practice, UDS communication is performed in a client-server relationship - with the client being a tester-tool and the
server being a vehicle ECU. For example, you can connect a CAN bus interface to the OBD2 connector of a car and send
UDS requests into the vehicle. Assuming the targeted ECU supports UDS services, it will respond accordingly.

In turn, this enables various use cases:

https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/obd2-explained-simple-intro

● Read/clear diagnostic trouble codes (DTC) for troubleshooting vehicle issues
● Extract parameter data values such as temperatures, state of charge, VIN etc
● Initiate diagnostic sessions to e.g. test safety-critical features
● Modify ECU behavior via resets, firmware flashing and settings modification

UDS is often referred to as 'vehicle manufacturer enhanced diagnostics' or 'enhanced diagnostics' - more on this below.

Example: Nissan Leaf SoC%

UDS and CAN ISO-TP are complex topics. As motivation, we've done a case study to show how it can be useful.
Specifically, we use a CANedge2 to request data on State of Charge (SoC%) and battery temperatures from a Nissan Leaf
EV. In the example, we also add a CANmod.gps and CANmod.temp to add GNSS, IMU and temperature data.

The multiframe ISO-TP responses and CANmod signals are DBC decoded via our Python API and written to a database for
visualization in Grafana dashboards. Check it out: playground case study

UDS message structure
UDS is a request based protocol. In the illustration we've outlined an example of an UDS request frame (using CAN bus):

A diagnostic UDS request on CAN contains various fields that we detail below:

Protocol Control Information (PCI)

The PCI field is not per se related to the UDS request itself, but is required for diagnostic UDS requests made on CAN bus.
In short, the PCI field can be 1-3 bytes long and contains information related to the transmission of messages that do not
fit within a single CAN frame. We will detail this more in the section on the CAN bus transport protocol (ISO-TP).

https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/products/gps-to-can-bus-gnss-imu
https://www.csselectronics.com/products/thermocouple-to-can-bus
https://www.csselectronics.com/pages/python-can-bus-api#void
https://www.csselectronics.com/pages/telematics-dashboard-open-source
https://grafana.csselectronics.stellarhosted.com/d/yBc5x90nk/css-playground-uds-temperature-gps?orgId=1
https://www.csselectronics.com/pages/nissan-leaf-can-bus-obd2-soc-state-of-charge

UDS Service ID (SID)

The use cases outlined above relate to different UDS services. When you wish to utilize a specific UDS service, the UDS
request message should contain the UDS Service Identifier (SID) in the data payload. Note that the identifiers are split
between request SIDs (e.g. 0x22) and response SIDs (e.g. 0x62). As in OBD2, the response SIDs generally add 0x40 to the
request SIDs. See also the overview of all standardized UDS services and SIDs. We will mainly focus on UDS service 0x22 in
this article, which is used to read data (e.g. speed, SoC, temperature, VIN) from an ECU.

UDS SIDs vs other diagnostic services

The standardized UDS services shown above are in practice a subset of a larger set of diagnostic services - see below
overview. Note here that the SIDs 0x00 to 0x0F are reserved for legislated OBD services (more on this later).

UDS security via session-control (authentication)

As evident, UDS enables extensive control over the vehicle ECUs. For security reasons, critical UDS services are
therefore restricted through an authentication process. Basically, an ECU will send a 'seed' to a tester, who in turn must
produce a 'key' to gain access to security-critical services. To retain this access, the tester needs to send a 'tester
present' message periodically.

In practice, this authentication process enables vehicle manufactures to restrict UDS access for aftermarket users and
ensure that only designated tools will be able to utilize the security-critical UDS services.

Note that the switching between authentication levels is done through diagnostic session control, which is one of the
UDS services available. Vehicle manufactures can decide which sessions are supported, though they must always
support the 'default session' (i.e. which does not involve any authentication). With that said, they decide what services
are supported within the default session as well. If a tester tool switches to a non-default session, it must send a 'tester
present' message periodically to avoid being returned to the default session.

UDS Sub Function Byte

The sub function byte is used in some UDS request frames as outlined below. Note, however, that in some UDS services,
like 0x22, the sub function byte is not used. Generally, when a request is sent to an ECU, the ECU may respond positively
or negatively. In case the response is positive, the tester may want to suppress the response (as it may be irrelevant). This
is done by setting the 1st bit to 1 in the sub function byte. Negative responses cannot be suppressed.

The remaining 7 bits can be used to define up to 128 sub function values. For example, when reading DTC information via
SID 0x19 (Read Diagnostic Information), the sub function can be used to control the report type - see also below table.

Example: Service 0x19 sub functions

If we look specifically at service 0x19, we can see an example of the various sub functions below:

UDS 'Request Data Parameters' - incl. Data Identifier (DID)

In most UDS request services, various types of request data parameters are used to provide further configuration of a
request beyond the SID and optional sub function byte. Here we outline two examples.

Service 0x19 (Read DTC Information) - request configuration

For example, service 0x19 lets you read DTC information. The UDS request for SID 0x19 includes a sub function byte -
for example, 0x02 lets you read DTCs via a status mask. In this specific case, the sub function byte is followed by a
1-byte parameter called DTC Status Mask to provide further information regarding the request. Similarly, other types of
sub functions within 0x19 have specific ways of configuring the request.

Service 0x22 (Read Data by Identifier) - Data Identifiers

Another example is service 0x22 (Read Data by Identifier). This service uses a Data Identifier (DID), which is a 2-byte
value between 0 and 65535 (0xFFFF). The DID serves as a parameter identifier for both requests/responses (similar to
how the parameter identifier, or PID, is used in OBD2).

For example, a request for reading data via a single DID in UDS over CAN would include the PCI field, the UDS service
0x22 and the 2-byte DID. Alternatively, one can request data for additional DIDs by adding them after the initial DID in
the request. We will look further into this in the section on how to record and decode UDS communication.

Data Identifiers can be proprietary and only known by OEMs, though some DIDs are standardized. This is for example
the case for the WWH-OBD DIDs (more on this later) and the Vehicle Identification Number (VIN) is 0xF190. See the
separate table for a list of standardized DIDs across UDS.

Positive vs. negative UDS responses

When an ECU responds positively to an UDS request, the response frame is structured with similar elements as the
request frame. For example, a 'positive' response to a service 0x22 request will contain the response SID 0x62 (0x22 +
0x40) and the 2-byte DID, followed by the actual data payload for the requested DID. Generally, the structure of a positive
UDS response message depends on the service. However, in some cases an ECU may provide a negative response to an
UDS request - for example if the service is not supported. A negative response is structured as in below CAN frame
example:

Details + Negative Response Code table

Below we briefly detail the negative response frame with focus on the NRC:

● The 1st byte is the PCI field
● The 2nd byte is the Negative Response Code SID, 0x7F
● The 3rd byte is the SID of the rejected request
● The 4th byte is the Negative Response Code (NRC)

In the negative UDS response, the NRC provides information regarding the cause of the rejection as per the table
below.

UDS vs CAN bus: Standards & OSI model
To better understand UDS, we will look at how it relates to CAN bus and the OSI model.

As explained in our CAN bus tutorial, the Controller Area Network serves as a basis for communication. Specifically, CAN
is described by a data-link layer and physical layer in the OSI model (as per ISO 11898). In contrast to CAN, UDS (ISO
14229) is a 'higher layer protocol' and utilizes both the session layer (5th) and application layer (7th) in the OSI model as
shown below:

Overview of UDS standards & concepts

UDS refers to a large number of standards/concepts, meaning it can be a bit overwhelming. To give you an overview, we
provide a high-level explanation of the most relevant ones below (with focus on CAN as the basis).

Quick overview of the UDS OSI model layers

In the following we provide a quick breakdown of each layer of the OSI model:

● Application: This is described by ISO 14229-1 (across the various serial data link layers). Further, separate ISO
standards describe the UDS application layer for the various lower layer protocols - e.g. ISO 14229-3 for CAN
bus (aka UDSonCAN)

● Presentation: This is vehicle manufacturer specific
● Session: This is described in ISO 14229-2
● Transport + Network: For CAN, ISO 15765-2 is used (aka ISO-TP)
● Data Link: In the case of CAN, this is described by ISO 11898-1
● Physical: In the case of CAN, this is described by ISO 11898-2

As illustrated, multiple standards other than CAN may be used as the basis for UDS communication - including FlexRay,
Ethernet, LIN bus and K-line. In this tutorial we focus on CAN, which is also the most common lower layer protocol.

ISO 14229-1 (Application Layer)

The ISO 14229-1 standard describes the application layer requirements for UDS (independent of what lower layer
protocol is used). In particular, it outlines the following:

https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial

● Client-server communication flows (requests, responses, ...)
● UDS services (as per the overview described previously)
● Positive responses and negative response codes (NRCs)
● Various definitions (e.g. DTCs, parameter data identifiers aka DIDs, ...)

ISO 14229-3 (Application Layer for CAN)

The purpose of 14229-3 is to enable the implementation of Unified Diagnostic Services (UDS) on Controller Area
Networks (CAN) - also known as UDSonCAN. This standard describes the application layer requirements for UDSonCAN.

This standard does not describe any implementation requirements for the in-vehicle CAN bus architecture. Instead, it
focuses on some additional requirements/restrictions for UDS that are specific to UDSonCAN.

Specifically, 14229-3 outlines which UDS services have CAN specific requirements. The affected UDS services are
ResponseOnEvent and ReadDataByPeriodicIdentifier, for which the CAN specific requirements are detailed in 14229-3.
All other UDS services are implemented as per ISO 14229-1 and ISO 14229-2.

ISO 14229-3 also describes a set of mappings between ISO 14229-2 and ISO 15765-2 (ISO-TP) and describes
requirements related to 11-bit and 29-bit CAN IDs when these are used for UDS and legislated OBD as per ISO 15765-4.

ISO 14229-2 (Session Layer)

This describes the session layer in the UDS OSI model. Specifically, it outlines service request/confirmation/indication
primitives. These provide an interface for the implementation of UDS (ISO 14229-1) with any of the communication
protocols (e.g. CAN).

ISO 15765-2 (Transport + Network Layer for CAN)

For UDS on CAN, ISO 15765-2 describes how to communicate diagnostic requests and responses. In particular, the
standard describes how to structure CAN frames to enable communication of multi-frame payloads. As this is a vital
part of understanding UDS on CAN, we go into more depth in the next section.

ISO 11898 (Physical + Data Link Layer for CAN)

When UDS is based on CAN bus, the physical and data link layers are described in ISO 11898-1 and ISO 11898-2. When
UDS is based on CAN, it can be compared to a higher layer protocol like J1939, OBD2, CANopen, NMEA 2000 etc.
However, in contrast to these protocols, UDS could alternatively be based on other communication protocols like
FlexRay, Ethernet, LIN etc.

UDSonCAN vs DoCAN

When talking about UDS based on CAN bus, you'll often see two terms used: UDSonCAN (UDS on CAN bus) and DoCAN
(Diagnostics on CAN bus). Some UDS tutorials use these terms interchangeably, which may cause confusion.

In ISO 14229-1 the terms are used as in our OSI model illustration. In other words, UDSonCAN is used to refer to ISO
14229-3, while DoCAN is used to refer to ISO 15765-2 aka ISO-TP.

However, part of the confusion may arise because ISO 14229-3 also provides an OSI model where DoCAN is both used
in relation to ISO 15765-2 and as an overlay across OSI model layers 2 to 7. In ISO 14229-2, DoCAN is referred to as the

https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/pages/canopen-tutorial-simple-intro
https://www.csselectronics.com/pages/marine-telematics-boat-data
https://www.csselectronics.com/pages/lin-bus-protocol-intro-basics

communication protocol on which UDS (ISO 14229-1) is implemented. This is in sync with the illustration from ISO
14229-3. In this context, DoCAN can be viewed as a more overarching term for the implementation of UDS on CAN,
whereas UDSonCAN seems consistently to refer to ISO 14229-3 only.

ISO 15765-3 vs. ISO 14229-3

UDS on CAN bus (UDSonCAN) is sometimes referred to through ISO 15765-3. However, this standard is now obsolete
and has been replaced by ISO 14229-3.

CAN ISO-TP - Transport Protocol (ISO 15765-2)
When implementing diagnostics on CAN, one challenge is the size of the CAN frame payload: For Classical CAN frames,
this is limited to 8 bytes and for CAN FD the payload is limited to 64 bytes. Vehicle diagnostics often involve
communication of far larger payloads.

ISO 15765-2 was established to solve the challenge of large payloads for CAN based vehicle diagnostics.
The standard specifies a transport protocol and network layer services for use in CAN based vehicle networks. The most
common use cases include UDS (ISO 14229-1), OBD (SAE J1979, ISO 15031-5) and world-wide harmonized OBD aka
WWH-OBD (ISO 27145).

The ISO-TP standard outlines how to communicate CAN data payloads up to 4095 bytes through segmentation, flow
control and reassembly. ISO-TP defines specific CAN frames for enabling this communication as shown below:

Regarding the Flow Control frame

The flow control frame is used to 'configure' the subsequent communication. It can be constructed as below:

A few comments:

● In the simplest case, the FC payload can be set to 30 00 00 00 00 00 00 00 (all remaining frames to be sent
without delay)

● Alternatively, one can decide to perform more granular control over the communication by e.g. alternating
between the Wait and Continue commands, as well as specifying a specific separation time (in milliseconds)
between frames

Other ISO-TP frame comments

● The ISO-TP frame type can be identified from the first nibble of the first byte (0x0, 0x1, 0x2, 0x3)
● The total frame size can be up to 4095 bytes (0xFFF) as evident from the FF frame
● The CF index runs from 1 to 15 (0xF) and is then reset if more data is to be sent
● Padding (e.g. 0x00, 0xAA, ...) is used to ensure the frame payloads equal 8 bytes in length

Below we outline how the ISO-TP protocol works for single-frame and multi-frame communication:

ISO-TP: Single-frame communication

In vehicle diagnostics, communication is initiated by a tester tool sending a request. This request frame is a Single Frame
(SF). In the simplest case, a tester tool sends a Single Frame to request data from an ECU. If the response can be
contained in a 7-byte payload, the ECU provides a Single Frame response.

ISO-TP: Multi-frame communication

When the payload exceeds 7 bytes, it needs to be split
across multiple CAN frames.

As before, a tester starts by sending a Single Frame (SF)
request to an ECU (sender). However, in this case the
response exceeds 7 bytes. Because of this, the ECU
sends a First Frame (FF) that contains information on
the total packet length (8 to 4095 bytes) as well as the
initial chunk of data. When the tester receives the FF, it
will send a Flow Control (FC) frame, which tells the ECU
how the rest of the data transfer should be transmitted.

Following this, the ECU will send Consecutive Frames
(CF) that contain the remaining data payload.

ISO-TP plays an important role in most CAN based
diagnostics protocols. Before we show practical
examples of such communication flows, it is useful to
get an overview of the most common vehicle diagnostic
protocols.

UDS vs. OBD2 vs. WWH-OBD vs. OBDonUDS
A common question is how UDS relates to On-Board Diagnostics (OBD2), World-Wide Harmonized OBD (WWH-OBD) and
OBDonUDS. To understand this, it is important to first note the following:

OBD (On-Board Diagnostics) is today implemented in different ways across countries and vehicles.

This is illustrated via the below OSI model comprising CAN based vehicle diagnostic protocols in use today:

Let's look at each diagnostic protocol:

● ISO OBD (or EOBD) refers to the OBD protocol specification legislated for use in EU cars, while SAE OBD refers to
the OBD protocol specification legislated for use in US. The two are technically equivalent and hence often
referred to simply as OBD or OBD2

● HD OBD (SAE J1939) typically refers to heavy duty OBD and is commonly implemented through the J1939
protocol in both US and EU produced vehicles with J1939-73 specifying diagnostic messages

● UDS (ISO 14229) has been implemented by vehicle manufacturers to serve the need for richer diagnostics
data/functionality - beyond the limits of the emissions-focused OBD protocols. It is implemented in most ECUs
today, across markets and vehicle types - though in itself, UDS does not offer the necessary standardization
required to serve as an alternative to OBD

● WWH-OBD (and/or possibly OBDonUDS) provide an updated version of OBD2 for emissions-related diagnostics -
based on UDS

To understand UDS, it is useful to better understand WWH-OBD and OBDonUDS:

What is WWH-OBD (ISO 27145)?

WWH-OBD is a global standard for vehicle diagnostics,
developed by the UN under the Global Technical
Regulations (GTR) mandate. It aims to provide a single,
future-proof alternative to the existing OBD protocols (ISO
OBD, SAE OBD, HD OBD). Furthermore, WWH-OBD is
based on UDS in order to suit the enhanced diagnostics
functionality already deployed by most automotive OEMs
today.

Advantages of WWH-OBD

Moving from OBD2 to WWH-OBD will involve a number of benefits, primarily derived from using the UDS protocol as
the basis. First of all, the data richness can be increased. OBD2 parameter identifiers (PID) are limited to 1 byte,
restricting the number of unique data types to 255, while the UDS data identifier (DID) is 2 bytes, enabling 65535
parameters.

For diagnostic trouble codes (DTCs), OBD2 would allow for 2-byte DTCs. Here, WWH-OBD allows for 'extended DTCs' of
3 bytes. This allows for grouping DTCs by 2-byte types and using the 3rd byte as a failure mode indicator to specify the
DTC sub type. Further, WWH-OBD enables a classification of DTCs based on how severe an issue is in regards to the
exhaust emissions quality.

WWH-OBD also seeks to take potential future requirements into account by allowing for the Internet Protocol (IP) to be
used as an alternative to CAN, meaning that UDSonIP will also be possible in future implementations of WWH-OBD.
One potential benefit from this will be the ability to one day perform remote diagnostics through the same protocol.

What is the status on WWH-OBD roll-out?

The intent of WWH-OBD is to serve as a global standard, across all markets and across all vehicle types (cars, trucks,
buses, ...). Further, the aim is to potentially expand the standardized functionality beyond just emissions-control.

In practice, WWH-OBD has been required in EU since 2014 for newly developed heavy duty vehicles (as per the Euro-VI
standards). Note in this case that HD OBD (as per J1939) remains allowed in these vehicles.

Beyond this, however, the roll-out of WWH-OBD has been limited. One challenge is that WWH-OBD is currently not
accepted by EPA/CARB in USA. See e.g. this discussion for potential motivations. However, recently OBDonUDS (SAE
J1979-2) is being adopted in US.

What is OBDonUDS (SAE J1979-2)?

Similar to how OBD2 has been split into 'SAE OBD' (SAE J1979) for US and 'ISO OBD' (ISO 15031) for EU, the 'next
generation' of OBD2 may again be regionally split.

Specifically, WWH-OBD (ISO 21745) has been adopted in EU for heavy duty vehicles already - but not yet in the US.
Instead, it has recently been decided to adopt OBD on UDS in US vehicles in the form of the SAE J1979-2 standard, which
serves as an update to the SAE J1979. The new SAE J1979-2 standard is also referred to as OBDonUDS. The aim is to
initiate a transition phase starting in 2023, where ECUs are allowed to support either OBD2 or OBDonUDS. From 2027,
OBDonUDS will be a mandatory requirement for all vehicles produced in the US.

Looking ahead: WWH-OBD vs. OBDonUDS

To recap, WWH-OBD and OBDonUDS both serve as possible solutions for creating a 'next generation" protocol for
emissions-related on-board diagnostics. It remains to be seen if the two will exist in parallel (like ISO/SAE OBD), or if
one of the protocols will become the de facto standard across both US, EU and beyond.

In either case, the basis for emissions-related diagnostics will be UDS, which will serve to simplify ECU programming as
the emissions-related diagnostics can increasingly be implemented within the same UDS based structure as the
manufacturer specific enhanced diagnostics.

https://www.xing.com/communities/posts/wwh-obd-1009991653

FAQ: How to request/record UDS data
We have now gone through the basics of UDS and the
CAN based transport protocol.

With this in place, we can provide some concrete guidance
on how you can work with UDS data in practice. In
particular, we will focus on how UDS can be used to log
various data parameters - like state of charge (SoC) in
electric vehicles.

Before the examples, we'll cover frequently asked
questions on UDS data logging:

Can the CANedge record UDS data?

Yes, as we'll show further below, the CANedge can be configured to request UDS data. Effectively, the device can be
configured to transmit up to 64 custom CAN frames as periodic or single shot frames. You can control the CAN ID, CAN
data payload, period time and delay.

For single-frame UDS communication, you simply configure the CANedge with the request frame, which will trigger a
single response frame from the ECU.

For multi-frame communication, you can again configure the CANedge with a request frame and then add the Flow
Control frame as a separate frame to be transmitted X milliseconds after the request frame. By adjusting the timing,
you can set this up so that the Flow Control is sent after the ECU has sent the First Frame response.

Note that the CANedge will record the UDS responses as raw CAN frames. You can then process and decode this data
via your preferred software (e.g. Vector tools) or our CAN bus Python API to reassemble and decode the frames.

Note: In future firmware updates, we may enhance the transmit functionality to enable the CANedge to transmit
custom CAN frames based on a trigger condition, such as receiving a specific frame. This would allow for sending the
Flow Control frame with a set delay after receiving the First Frame, providing a simpler and more robust

https://www.csselectronics.com/pages/mdf4-converters-mf4-asc-csv
https://www.csselectronics.com/pages/python-can-bus-api

implementation. With that said, the current functionality will serve to support most UDS communicated related to
services 0x22 (Read Data by Identifier) and 0x19 (Read DTC Information).

What data can I log via UDS?

A very common use case for recording UDS data via 'standalone' data loggers will be to acquire diagnostic trouble code
values, e.g. for use in diagnosing issues.

In addition to the trouble codes, UDS lets you request the 'current value" of various sensors related to each ECU. This
allows e.g. vehicle fleet managers, researchers etc. to collect data of interest such as speed, RPM, state of charge,
temperatures etc. from the car (assuming they know how to request/decode the data, as explained below).

Beyond the above, UDS can of course also be used for more low-level control of ECUs, e.g. resets and flashing of
firmware, though such use cases are more commonly performed using a CAN bus interface - rather than a 'standalone'
device.

Is UDS data proprietary - or are there public parameters?

Importantly, UDS is a manufacturer specific diagnostic protocol. In other words, while UDS provides a standardized
structure for diagnostic communication, the actual 'content" of the communication remains proprietary and is in most
cases only known to the manufacturer of a specific vehicle/ECU.

For example, UDS standardizes how to request parameter data from an ECU via the 'Read Data By Identifier" service
(0x22). But it does not specify a list of standardized identifiers and interpretation rules. In this way, UDS differs from
OBD2, where a public list of OBD2 PIDs enable almost anyone to interpret OBD2 data from their car.

With that said, vehicles that support WWH-OBD or OBDonUDS may support some of the usual OBD2 PIDs like speed,
RPM etc via the usual PID values - but with a prefix of 0xF4 as shown in Example 1 below.

Generally, only the manufacturer (OEM) will know how to request proprietary parameters via UDS - and how to
interpret the result. Of course, one exception to this rule is cases where companies or individuals successfully reverse
engineer this information. Engaging in such reverse engineering is a very difficult task, but you can sometimes find
public information and DBC files where others have done this exercise. Our intro to DBC files contain a list of public
DBC/decoding databases.

Who benefits from logging UDS data?

Because of the proprietary nature of UDS communication, it is typically most relevant to automotive engineers working
at OEMs. Tools like the CANedge CAN bus data logger allow these users to record raw CAN traffic from a vehicle - while
at the same time requesting diagnostic trouble codes and specific parameter values via UDS.

Further, some after market users like vehicle fleet managers and even private persons can benefit from UDS assuming
they are able to identify the reverse engineered information required to request and decode the UDS parameters of
interest.

Logging UDS data will also become increasingly relevant assuming WWH-OBD gets rolled out as expected. Already
today, WWH-OBD is used in EU heavy duty vehicles produced after 2014, meaning UDS communication will be relevant
for use cases related to on-board diagnostics in these vehicles.

https://www.csselectronics.com/pages/can-dbc-file-database-intro

Central Gateway (CGW): Why log sensor data via UDS vs. CAN?

If you're looking to request UDS-based diagnostic trouble codes (DTC), you'll of course have to use UDS communication
for this purpose. However, if your aim is to record current sensor values it is less clear.
Typically, data parameters of interest for e.g. vehicle telematics (speed, state of charge etc) will already be
communicated between ECUs on the CAN bus in the form of raw CAN frames - without the need for a diagnostic tool
requesting this information. That is because ECUs rely on communicating this information as part of their operation (as
explained in our intro to CAN bus).
If you have direct access to the CAN bus, it would thus appear easier to simply log this raw CAN traffic and process it. If
you are the vehicle manufacturer, you will know how to interpret this raw CAN data either way - and it'll be simpler to
perform your device configuration and post processing in most cases. If you're in the aftermarket, it'll also be simpler
to reverse engineer the raw CAN frames as you can focus on single frames - and avoid the request/response layer of
complexity.

However, one key reason why UDS is frequently used for extracting sensor values despite the above is due to
'gateways'. Specifically, an increasing share of modern cars have started to block the access to the raw CAN bus data
via the OBD2 connector. This is particularly often the case for German vehicles, as well as electric vehicles.
To record the existing CAN traffic in such a car, you would need to e.g. use a CANCrocodile adapter and 'snap' it onto
the CAN low/high wiring harness. This in turn will require exposing the wiring harness by removing a panel, which is
often prohibitive for many use cases. In contrast, the OBD2 connector gateways typically still allow for UDS
communication - incl. sensor value communication.

A secondary - and more subtle - reason is that most reverse engineering work is done by 'OBD2 dongle manufacturers'.
These develop tools that let you extract data across many different cars through the OBD2 connector. Increasingly, the
only way for these dongles to get useful information through the OBD2 connector is through UDS communication,
which drives a proportionally higher availability of information/databases related to UDS parameters vs. raw CAN
parameters.

Does my vehicle support UDS?

Since most ECUs today support UDS communication, the answer is in "yes, most likely".

If you're the vehicle manufacturer, you will in most cases have the information required to construct UDS requests for
whatever data you need - and you'll also know how to decode it.

For the specific case of recording WWH-OBD data in EU trucks, standardized DID information can be recorded by both
OEMs and after-market users - similar to how you can record public OBD2 PIDs from cars/trucks.

Beyond the above, if you are in the after market and wish to record proprietary UDS information from a car/truck, it
will be difficult. In this case, you would either have to contact the OEM (e.g. as a system integrator/partner) or identify
the request/decoding information through reverse engineering. The latter is in practice impossible for most people.

In select cases you may be able to utilize public information shared on e.g. github to help in constructing UDS requests
- and decoding the responses. Just keep in mind that public resources are based on reverse engineering efforts - and
may risk being incorrect or outdated. You should therefore take all information with a significant grain of salt.

Why is UDS increasingly important?

If your use case involves recording data from cars produced between 2008 and 2018, you will most often be interested
in data that can be collected via OBD2 data logging. This is because most ICE cars after 2008 support a large share of
the public OBD2 parameter identifiers like speed, RPM, throttle position, fuel level etc.
However, the availability of OBD2 data is expected to decrease over time for multiple reasons.

https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial

First of all, as we explained in the previous section, WWH-OBD (based on UDS) or OBDonUDS are expected to gradually
replace OBD2 as the de facto standard for vehicle diagnostics.

Second, with the rise of electric vehicles, legislated OBD2 is not necessarily supported at all. And even if an EV supports
some OBD2 PIDs, you'll note from our OBD2 PID list that some of the most relevant EV parameters like State of Charge
(SoC) and State of Health (SoH) are not available via OBD2. In contrast, UDS remains supported in most EVs and will
provide access to a far broader range of data - although without the after-market convenience of a public list of UDS
parameters (at least yet). It is expected that EV sales will overtake ICE car sales between 2030 and 2040 - and thus UDS
communication will become increasingly relevant.

About the CANedge CAN logger

The CANedge lets you easily record CAN/UDS data to an 8-32 GB
SD card. You can customize what CAN frames to send, incl.
custom UDS requests and flow control frames. Data can be
processed via free software/API tools.

Example 1: Record single frame UDS data (Speed via
WWH-OBD)

To show how UDS works in practice, we will start with a
basic example. As outlined before, WWH-OBD is based on
UDS - and is mandated in all EU trucks after 2014.

As part of this, many EU heavy duty trucks will let you
request parameters like speed, RPM, fuel level etc in a
way similar to how you'd request this information via
OBD2 PID requests in a car - see our OBD2 intro and
OBD2 data logger intro for details. However, under
WWH-OBD (ISO 21745-2), the OBD2 PIDs are replaced by
the WWH-OBD DIDs.

For service 01, WWH-OBD PIDs are equivalent to the OBD2 PIDs, except that 0xF4 is added in front. For example, the
OBD2 PID Vehicle Speed is 0x0D - which becomes 0xF40D in the WWH-OBD context.

In this case, we will use a CANedge2 CAN bus data logger as our "tester" tool. This tool lets you record raw CAN bus data,
as well as transmit custom CAN frames. To request WWH-OBD Vehicle Speed, we will use the UDS service 0x22 (Read Data
by Identifier) and the Data Identifier 0xF40D. The request/response looks as below:

https://www.csselectronics.com/pages/electric-vehicle-data-logger-cloud-battery-telematics
https://www.csselectronics.com/pages/can-bus-hardware-products
https://www.csselectronics.com/pages/can-bus-software-api-tools
https://cdn.shopify.com/s/files/1/0579/8032/1980/files/CANedge-CAN-Bus-Data-Logger_th.jpg?v=1629288722
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2

Communication flow details

Note how the request is sent with CAN ID 0x18DB33F1. This is the same 29-bit CAN ID that would be used to perform a
functionally addressed OBD2 PID request in heavy duty vehicles and can be compared with the 11-bit 0x7DF CAN ID
used for OBD2 requests in cars.

The response has CAN ID 0x18DAF100, an example of a physical response ID matching the IDs you'd see in regular
OBD2 responses from heavy duty vehicles.

Let's break down the communication flow message payloads:

First, the CANedge2 sends a Single Frame (SF) request:

● The initial 4 bits of the PCI field equal the frame type (0x0 for SF)
● The next 4 bits of the PCI field equal the the length of the request (3 bytes)
● The 2nd byte contains the Service Identifier (SID), in this case 0x22
● The 3rd and 4th bytes contain the DID for Vehicle Speed in WWH-OBD (0xF40D)
● The remaining bytes are padded

In response to this request, the truck responds with a Single Frame (SF) response:

● The 1st byte again reflects the PCI field (now with a length of 4 bytes)
● The 2nd byte is the response SID for Read Data by Identifier (0x62, i.e. 0x22 + 0x40)
● The 3rd and 4th bytes again contain the DID 0xF40D
● The 5th byte contains the value of Vehicle Speed, 0x32

Here we can use the same decoding rules as for ISO/SAE OBD2, meaning that the physical value of Vehicle Speed is
simply the decimal form of 0x32 - i.e. 50 km/h. See also our OBD2 PID conversion tool.
If you are familiar with logging OBD2 PIDs, it should be evident that WWH-OBD requests are very similar, except for
using the UDSonCAN payload structure for requests/responses.

Example 2: Record & decode multi frame UDS data (SoC)

In this section, we illustrate how multi frame UDS
communication works in the context of CAN ISO-TP.

Specifically, we will use the CANedge2 and the UDS service
SID 0x22 (Read Data By Identifier) to request the current
value of State of Charge (SoC%) from a Hyundai Kona
electric vehicle.

First, the CANedge is configured to send two CAN frames:

1. A Single Frame (SF) request (period: 5000 ms, delay: 0 ms)
2. A Flow Control (FC) frame (period: 5000 ms, delay: 100 ms)

A subset of the resulting communication flow looks as below:

Communication flow details

In the following we explore this communication between the CANedge and ECU in detail. First of all, the initial Single
Frame (SF) request is constructed via the same logic as in our previous example - containing the PCI field, the SID 0x22
and the DID. In this case, we use the DID 0x0101. In response to the initial SF request, the targeted ECU sends a First
Frame (FF) response:

● The initial 4 bits equal the frame type (0x1 for FF)
● The next 12 bits equal the data payload size, in this case 62 bytes (0x03E)
● The 3rd byte is the response SID for Read Data by Identifier (0x62, i.e. 0x22 + 0x40)
● The 4th and 5th bytes contain the Data Identifier (DID) 0x0101
● The remaining bytes contain the initial part of the data payload for the DID 0x0101

Following the FF, the tester tool now sends the Flow Control (FC) frame:

● The initial 4 bits equal the frame type (0x3 for FC)
● The next 4 bits specifies that the ECU should "Continue to Send" (0x0)
● The 2nd byte sets remaining frames to be sent without flow control or delay
● The 3rd byte sets the minimum consecutive frame separation time (ST) to 0

Once the ECU receives the FC, it sends the remaining Consecutive Frames (CF):

● The initial 4 bits equal the frame type (0x2 for CF)
● The next 4 bits equal the index counter, incremented from 1 up to 8 in this case
● The remaining 7 bytes of each CF contain the rest of the payload for the DID

Regarding proprietary UDS data

Part of the information used here is proprietary. In particular, it is generally not known what Data Identifier (DID) to use
in order to request e.g. State of Charge from a given electric vehicle, unless you're the vehicle manufacturer (OEM).
Further, as explained in the next section, it is not known how to decode the response payload.

However, various online resources exist e.g. on github, where enthusiasts create open source databases for specific
parameters and certain cars (based on reverse engineering). The information we use for this specific communication is
taken from one such database.

Regarding the CAN IDs used

In this case we use the CAN ID 0x7E4 to request data from a specific ECU, which in turn responds with CAN ID 0x7EC.
This is known as a physically addressed request.

In contrast, functionally addressed request would use the CAN ID 0x7DF (or 0x18DB33F1 in heavy duty vehicles).
Generally, request/response CAN IDs are paired (as per the table below) and you can identify the physical request ID
corresponding to a specific physical response ID by subtracting the value 8 from the response ID. In other words, if an
ECU responds via CAN ID 0x7EC, the physical request ID targeting that ECU would be 0x7E4 (as in our EV example).

Since you may not know what address to target initially, you can in some cases start by sending out a functional
request using the CAN ID 0x7DF, in which case the relevant ECU should provide a positive First Frame response if the
initial request payload is structured correctly. In some vehicles, you may be able to also send the subsequent Flow
Control frame using the same CAN ID, 0x7DF, in order to trigger the ECU to send the remaining Consecutive Frames.
However, some implementations may require that you instead utilize the physical addressing request ID for the Flow
Control frame.

Implementing a request structure with dynamically updating CAN IDs may be difficult. If you're the manufacturer, you
will of course know the relevant CAN IDs to use for sending physically addressed service requests. If not, you may
perform an analysis using e.g. a CAN bus interface to identify what response CAN IDs appear when sending functionally
addressed service requests - and using this information to construct your configuration.

On a separate note, ISO 15765-4 states that
enhanced diagnostics requests/responses may
utilize the legislated OBD2 CAN ID range as long as
it does not interfere - which is what we are seeing
in this specific Hyundai Kona example where the
IDs 0x7EC/0x7E4 are used for proprietary data. See
also the table from ISO 15765-4 for an overview of
the legislated OBD CAN identifiers for use in
functional and physical OBD PID requests.

Regarding timing parameters

In the above example, we generally focus on the sequence of CAN frames. The sequence is important: For example, if
your tester tool sends the Flow Control frame before receiving the First Frame, the Flow Control frame will either be
ignored (thus not triggering the Consecutive Frames) or cause an error.

However, in addition to this, certain timing thresholds will also need to be satisfied. For example, if your tester tool
receives the First Frame from an ECU of a multi frame response, the ECU will 'time out' if the Flow Control frame is not
sent within a set time period.

As a rule of thumb, you should configure your tester (e.g. the CANedge) so that the Flow Control frame is always sent
after the First Frame response is received from the ECU (typically this happens within 10-50 ms from sending the initial
request) - but in a way so that it is sent within a set time after receiving the First Frame (e.g. within 0-50 ms). For details
on this, feel free to contact us.

How to reassemble and decode multi-frame UDS data?

We've now shown how you can request/record a multi-frame UDS response to collect proprietary ECU sensor data. In
order to extract 'physical values' like State of Charge, you need to know how to interpret the response CAN frames. As
explained, the 'decoding' information is typically proprietary and only known to the OEM. However, in the specific case of
the Hyundai Kona EV, we know the following about the SoC signal from online resources:

● The signal is in the 8th byte of the data payload
● The signal is Unsigned
● The signal has a scale 0.5, offset 0 and unit "%"

So how do we use this knowledge to decode the signal?

First, we need to reassemble the segmented CAN frames. The result of this is shown in the previous communication
example. Via reassembly, we get a "CAN frame" with ID 0x7EC and a payload exceeding 8 bytes. The payload in this case
contains the SID in the 1st byte and DID in the 2nd and 3rd bytes.

You could process the reassembled CAN frame manually in e.g. Excel. However, we generally recommend to use CAN
databases (DBC files) to store decoding rules. In this particular case, you can treat the reassembled CAN frame as a case
of extended multiplexing. We provide an example UDS DBC file for the Hyundai Kona incl. State of Charge and
temperature signals, which can be useful as inspiration.

Our CAN bus Python API enables reassembly & DBC decoding of multi-frame UDS responses - see our API examples
repository for more details incl. the Hyundai Kona sample data.

Example 3: Record the Vehicle Identification Number
The Vehicle Identification Number (aka VIN, chassis number, frame number) is a unique identifier code used for road
vehicles. The number has been standardized and legally required since the 1980s - for details see the VIN page on
Wikipedia.

https://www.csselectronics.com/pages/can-dbc-file-database-intro#public-dbc-files
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://github.com/CSS-Electronics/api-examples/blob/master/examples/data-processing/dbc_files/tp_uds.dbc
https://www.csselectronics.com/pages/python-can-bus-api
https://github.com/CSS-Electronics/api-examples/tree/master/examples/data-processing
https://en.wikipedia.org/wiki/Vehicle_identification_number
https://en.wikipedia.org/wiki/Vehicle_identification_number

A VIN consists of 17 ASCII characters and can be extracted on-request from a vehicle. This is useful in e.g. data logging or
telematics use cases where a unique identifier is required for association with e.g. CAN bus log files.

CAN data bytes can be converted from HEX to ASCII via tables, online HEX to ASCII converters, Python packages etc. For
example, the byte 0x47 corresponds to the letter "G". Since a VIN is 17 bytes (17 ASCII characters) long, it does not fit into
a single CAN frame, but has to be extracted via a multi frame diagnostic request/response as in Example 2. Further, the
VIN is extracted differently depending on the protocol used.

Below we provide three examples on how to record the VIN.

3.1: How to record the VIN via OBD2 (SAE J1979)

To extract the Vehicle Identification Number from e.g. a passenger car using OBD2 requests, you use Service 0x09 and the
PID 0x02:

Communication flow details

The logic of the frame structure is identical to Example 2, with the tester tool sending a Single Frame request with the
PCI field (0x02), request service identifier (0x09) and data identifier (0x02).

The vehicle responds with a First Frame containing the PCI, length (0x014 = 20 bytes), response SID (0x49, i.e. 0x09 +
0x40) and data identifier (0x02). Following the data identifier is the byte 0x01 which is the Number Of Data Items
(NODI), in this case 1 (see SAE J1979 or ISO 15031-5 for details).

The remaining 17 bytes equal the VIN and can be translated from HEX to ASC via the methods previously discussed.

3.2: How to record the VIN via UDS (ISO 14229-2)

To read the Vehicle Identification Number via UDS, you can use the UDS SID 0x22 and the DID 0xF190:

https://www.rapidtables.com/convert/number/hex-to-ascii.html
https://www.kite.com/python/answers/how-to-convert-a-string-from-hex-to-ascii-in-python

Communication flow details

As evident, the request/response communication flow looks similar to the OBD2 case above. The main changes relate
to the use of the UDS service 0x22 instead of the OBD2 service 0x09 - and the use of the 2-byte UDS DID 0xF190
instead of the 1 byte OBD2 PID 0x02. Further, the UDS response frame does not include the Number of Data Items
(NODI) field after the DID, in contrast to what we saw in the OBD2 case.

3.3: How to record the VIN via WWH-OBD (ISO 21745-3)

If you need to request the Vehicle Identification Number from an EU truck after 2014, you can use the WWH-OBD
protocol. The structure is identical to the UDS example, except that WWH-OBD specifies the use of the DID 0xF802 for the
VIN.

UDS data logging - applications
In this section, we outline example use cases for recording UDS data.

UDS telematics for prototype electric
vehicles

As an OEM, you may need to get data on various sensor
parameters from prototype EVs while they are operating
in the field. Here, the CANedge2 can be deployed to
request data on e.g. state of charge, state of health,
temperatures and more by transmitting UDS request
frames and flow control frames periodically. The data can
e.g. be combined with GNSS/IMU data from a
CANmod.gps and sent via a 3G/4G access point to your
own cloud server for analysis via Vector tools, Python or
MATLAB.

Training a predictive maintenance model

If you're looking to implement predictive maintenance
across fleets of heavy duty vehicles, the first step is
typically to "train your model". This requires large
amounts of training data to be collected, including both
sensor data (speed, RPM, throttle position, tire pressures
etc) and "classification results" (fault / no fault). One way
to obtain the latter is by periodically requesting diagnostic
trouble codes from the vehicle, providing you with log files
that combine both types of data over time. You can use
the CANedge1 to collect this data offline onto SD cards, or
the CANedge2 to automatically offload the data - e.g.
when the vehicles return to stationary WiFi routers in
garages.

CANopen Explained - A Simple Intro
In this guide we introduce the CANopen protocol basics incl. the object dictionary, services, SDO, PDO and master/slave
nodes. CANopen can seem complex - so this tutorial is a visual intro in layman's terms.

What is CANopen?
CANopen is a CAN based communication protocol.

The CANopen standard is useful as it enables off-the-shelf interoperability between devices (nodes) in e.g. industrial
machinery. Further, it provides standard methods for configuring devices - also after installation. CANopen was originally
designed for motion-oriented machine control systems. Today, CANopen is extensively used in motor control
(stepper/servomotors) - but also a wide range of other applications:

Robotics
Automated robotics, conveyor belts &

other industrial machinery

Medical
X-ray generators, injectors, patient

tables & dialysis devices

Automotive
Agriculture, railway, trailers, heavy

duty, mining, marine & more

https://www.csselectronics.com/pages/canopen-data-logger
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/mining-vehicle-telematics-dashboard
https://www.csselectronics.com/pages/marine-telematics-boat-data

CANopen - higher layer protocol

The following is important to understand:

CANopen is a "higher layer protocol" based on CAN
bus.

This means that CAN bus (ISO 11898) serves as the
'transport vehicle' (like a truck) for CANopen messages
(like containers).

You can view CANopen from a 7-layer OSI model.

CANopen in OSI model context

The OSI model is a conceptual model standardizing communication functions across diverse communication
technologies. Lower layers describe basic communication (e.g. raw bit streams), while higher layers describe things like
segmentation of long messages and services like initiating, indicating, responding, and confirming of messages.
CAN bus represents the two lowest layers (1: Physical, 2: Data Link). This means that CAN simply enables the
transmission of frames with an 11 bit CAN ID, a remote transmission (RTR) bit and 64 data bits (fields relevant to
higher-layer protocols). In other words, CAN bus plays the same role in CANopen as it does in e.g. the J1939 protocol.
As evident above, CANopen implements the 7th layer of the OSI model (Application) via a set of standards. As part of
this, it adds several important concepts that we detail below. It's worth noting, that CANopen could also be adapted to
other data link layer protocols than CAN (e.g. EtherCAT, Modbus, Powerlink). To fully understand CAN bus vs. CANopen,
see also our CAN bus intro tutorial.

CANopen FD

In this article we primarily focus on CANopen based on Classical CAN. However, it is worth noting that as CAN FD is
being rolled out, CANopen FD may play an increasingly important role as the next generation of CANopen. For details,
see the overview by CAN in Automation on CANopen FD.

Six core CANopen concepts
Even if you're familiar with CAN bus and e.g. J1939, CANopen adds a range of important new concepts:

Communication
Models

Communication
Protocols

Device
States

Object
Dictionary

Electronic Data
Sheet

Device Profiles
Standards

describe e.g. I/O

https://en.wikipedia.org/wiki/OSI_model
https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro
https://www.can-cia.org/can-knowledge/canopen-fd/canopen-fd-the-art-of-embedded-networking/

There are 3
models for

device/node
communication:

Master/slave,
client/server and
producer/consu

mer

Protocols are
used in

communication,
e.g. configuring
nodes (SDOs) or

transmitting
real-time data

(PDOs)

A device
supports

different states. A
'master' node

can change state
of a 'slave' node -

e.g. resetting it

Each device has
an OD with
entries that

specify e.g. the
device config. It
can be accessed

via SDOs

The EDS is a
standard file

format for OD
entries - allowing
e.g. service tools

to update devices

modules (CiA
401) and

motion-control
(CiA 402) for

vendor
independence

The below illustration shows how the CANopen concepts link together - and we will detail each below:

CANopen communication basics
In a CANopen network, several devices need to communicate. For example, in an industrial automation setup you may
have a robot arm with multiple servomotor nodes and a control interface/PC node. To facilitate communication, three
models exist within CANopen - each closely linked to the CANopen protocols that we look at shortly. See below for a brief
introduction:

CANopen communication models

Master/Slave
One node (e.g. the control interface)

acts as application master or host
controller. It sends/requests data

from the slaves (e.g. the servo
motors). This is used in e.g.

diagnostics or state management.

Client/Server
A client sends a data request to a

server, which replies with the
requested data. Used e.g. when an
application master needs data from

the OD of a slave. A read from a
server is an "upload", while a write is

Consumer/Producer
Here, the producer node broadcasts

data to the network, which is
consumed by the consumer node.

The producer either sends this data
on request (pull model) or without a

specific request (push model).

There can be 0-127 slaves in
standard applications. Note that in a
single CANopen network, there can
be different host controllers sharing

the same data link layer.
Service example: NMT

a "download" (the terminology takes
a "server side" perspective).

Service example: SDO

Service example: Heartbeat

As evident, the models are practically identical, but we distinguish between them for terminology consistency.

The CANopen frame

To understand CANopen communication, it is necessary to break down the CANopen CAN frame:

The 11-bit CAN ID is referred to as the Communication Object Identifier (COB-ID) and is split in two parts: By default, the
first 4 bits equal a function code and the next 7 bits contain the node ID.

To understand how the COB-ID works, let's take outset in the pre-defined allocation of identifiers used in simple CANopen
networks (see the table). Note: We'll refer to COB-IDs and Node IDs in HEX below. As evident, the COB-IDs (e.g. 381, 581,
...) are linked to the communication services (transmit PDO 3, transmit SDO, ...). As such, the COB-ID details which node is
sending/receiving data - and what service is used.

https://www.csselectronics.com/pages/canopen-tutorial-simple-intro#nmt-network-management
https://www.csselectronics.com/pages/canopen-tutorial-simple-intro#sdo
https://www.csselectronics.com/pages/canopen-tutorial-simple-intro#heartbeat

Example

A CANopen device with node ID 5 would transmit an SDO
via the 11-bit CAN ID 585.
This corresponds to a binary function code of 1011 and a
node ID of 5 (binary: 0000101) - see the illustration.

CANopen communication protocols/services

Below we briefly outline the 7 service types mentioned, incl. how they utilize the 8 CAN frame data bytes.

#1 Network Management (NMT)

What is it? The NMT service is used for controlling the state of CANopen devices (e.g. pre-operational, operational,
stopped) by means of NMT commands (e.g. start, stop, reset).

How does it work? To change state, the NMT master sends a 2-byte message with CAN ID 0 (i.e. function code 0 and
node ID 0). All slave nodes process this message. The 1st CAN data byte contains the requested state - while the 2nd
CAN data byte contains the node ID of the targeted node. The node ID 0 indicates a broadcast command.

Possible commands include transition to operational (state 01), to stopped (state 02), pre-operational (state 80) as well
as reset application (81) and reset communication (82).

#2 Synchronization (SYNC)

What is it? The SYNC message is used e.g. to synchronize the sensing of inputs and actuation of several CANopen
devices - typically triggered by the application master.

How does it work? The application master sends the SYNC message (COB ID 080) to the CANopen network (with or
without SYNC counter). Multiple slave nodes may be configured to react to the SYNC and respond by transmitting input
data captured at the very same time or by setting the output at the very same time as the nodes participating in the
synchronous operation. Using the SYNC counter several groups of synchronously operating devices can be configured.

#3 Emergency (EMCY)

What is it? The emergency service is used in case a device experiences a fatal error (e.g. a sensor failure), allowing it to
indicate this to the rest of the network.

How does it work? The affected node sends a single EMCY message (e.g. with COB-ID 085 for node 5) to the network
with high priority. The data bytes contain information about the error, which can be looked up for details.

#4 Timestamp (TIME) [PDO]

What is it? With this communication service a global network time can be distributed. The TIME service contains a
6-byte date & time information.

How does it work? An application master sends out the TIME message with CAN ID 100, where the initial 4 data bytes
contain time in ms after midnight and the next 2 bytes contain the number of days since January 1, 1984.

#5 Process Data Object [PDO]

What is it? The PDO service is used to transmit real-time data between devices - e.g. measured data such as position
or command data such as torque requests. In this respect it is similar to e.g. broadcasted data parameters in J1939.

How does it work? We'll deep dive on this further below.

#6 Service Data Object [SDO]

What is it? The SDO services are used to access/change values in the object dictionary of a CANopen device - e.g. when
an application master needs to change certain configurations of a CANopen device.

How does it work? We'll deep dive on this further below.

#7 Node monitoring (Heartbeat) [SDO]

What is it? The Heartbeat service has two purposes: To provide an 'alive' message and to confirm the NMT command.

How does it work? An NMT slave device periodically sends (e.g. every 100ms) the Heartbeat message (e.g. with CAN ID
705 for node 5) with the node's "state" in the 1st data byte

The "consumer" of the Heartbeat message (e.g. the NMT master and optionally any other device) then reacts if no
message is received in a certain time limit.

https://www.csselectronics.com/pages/canopen-tutorial-simple-intro#pdo-process-data-object
https://www.csselectronics.com/pages/canopen-tutorial-simple-intro#sdo-service-data-object

The PDO and SDO services are particularly important as they form the basis for most CANopen communication. Below we
deep-dive on each of these - but first we need to introduce a core concept of CANopen: The object dictionary.

CANopen Object Dictionary
All CANopen nodes must have an object dictionary (OD) - but what is it? The object dictionary is a standardized structure
containing all parameters describing the behavior of a CANopen node. OD entries are looked up via a 16-bit index and
8-bit subindex. For example, index 1008 (subindex 0) of a CANopen-compliant node OD contains the node device name.

Specifically, an entry in the object dictionary is defined by attributes:

● Index: 16-bit base address of the object
● Object name: Manufacturer device name
● Object code: Array, variable, or record
● Data type: E.g. VISIBLE_STRING, or UNSIGNED32 or Record Name
● Access: rw (read/write), ro (read-only), wo (write-only)
● Category: Indicates if this parameter is mandatory/optional (M/O)

OD standardized sections

The object dictionary is split into standardized sections where some entries are mandatory and others are fully
customizable. Importantly, OD entries of a device (e.g. a slave) can be accessed by another device (e.g. a master) via CAN
using e.g. SDOs. For example, this might let an application master change whether a slave node logs data via a specific
input sensor - or how often the slave sends a heartbeat.

Link to Electronic Data Sheet and Device Configuration File

To understand the OD, it is helpful to look at the 'human-readable form': The Electronic Data Sheet and Device
Configuration File.

The Electronic Data Sheet (EDS)
In practice, configuring/managing complex CANopen networks will be done using adequate software tools.
To simplify this, the CiA 306 standard defines a human-readable (and machine friendly) INI file format, acting as a
"template" for the OD of a device - e.g. the "ServoMotor3000". This EDS is typically provided by the vendor and contains
info on all device objects (but not values).

Device Configuration File (DCF)
Assume a factory has bought a ServoMotor3000 to integrate into their conveyor belt. In doing so, the operator edits the
device EDS and adds specific parameter values and/or changes the names of each object described in the EDS. In doing
so, the operator effectively creates what is known as a Device Configuration File (DCF). With this in place, the
ServoMotor3000 is ready for integration into the specific CANopen network on-site.

EDS and DCF example

Reviewing real EDS/DCF examples is one of the best ways to really understand the object dictionary of CANopen - see
e.g. the difference between an EDS and DCF object entry below. We recommend checking out the CiA 306 standard to
gain a deeper understanding of the OD, EDS and DCF with practical examples.

As mentioned, the DCF is typically created upon device integration. However, often it will be necessary to read and/or
change the object values of a node after initial configuration - this is where the CANopen SDO service comes into play.

SDO - configuring the CANopen network
What is the SDO service? The SDO service allows a CANopen node to read/edit values of another node's object dictionary
over the CAN network. As mentioned under 'communication models', the CANopen SDO services utilize a "client/server"
behavior. Specifically, an SDO "client" initiates the communication with one dedicated SDO "server". The purpose can be
to update an OD entry (called an "SDO download") or read an entry ("SDO upload"). In simple master/slave networks, the
node with NMT master functionality acts as the client for all NMT slave nodes reading or writing to their ODs.

https://www.can-cia.org/standardization/specifications/

Example: Client node SDO download

The client node can initiate an SDO download to node 5 by broadcasting below CAN frame - which will trigger node 5 (and
be ignored by other nodes, see above illustration). The SDO 'receive' (i.e. request) CAN frame looks as below:

SDO message variables explained

● First, COB-ID 605 reflects the use of an 'SDO receive' (COB-ID 600 + node ID).
● The CCS (client command specifier) is the transfer type (e.g. 1: Download, 2: Upload)
● n is the #bytes in data bytes 4-7 that do not contain data (valid if e & s are set)
● If set, e indicates an "expedited transfer" (all data is in a single CAN frame)
● If set, s indicates that data size is shown in n
● Index (16 bits) and subindex (8 bits) reflect the OD address to be accessed
● Finally, bytes 4-7 contain the data to be downloaded to node 5

CANopen SDO example comments

Once the CAN frame is sent by the master (client), the slave node 5 (server) responds via an 'SDO transmit' with COB-ID
585. The response contains the index/subindex and 4 empty data bytes. Naturally, if the client node requested an
upload instead (i.e. reading data from the node 5 OD), node 5 would respond with the relevant data contained in bytes
4-7. A few comments:

● As evident, each SDO uses 2 identifiers, creating an "SDO channel"
● The example is simplified as it's "expedited" (data is contained in the 4 bytes)
● For larger data scenarios, SDO segmentation/block transfers can be used

https://en.wikipedia.org/wiki/CANopen#Service_Data_Object_(SDO)_protocol

SDOs are flexible, but carry a lot of overhead - making them less ideal for real-time operational data. This is where the
PDO comes in.

PDO - operating the CANopen network
First of all: What is the CANopen PDO service? The CANopen PDO service is used for effectively sharing real-time
operational data across CANopen nodes. For example, the PDO would carry pressure data from a pressure transducer -
or temperature data from a temperature sensor. But wait: Can't the SDO service just do this?

Yes, in principle the SDO service could be used for this. However, a single SDO response can only carry 4 data bytes due
to overhead (command byte and OD addresses). Further, let's say a master node needs two parameter values (e.g.
"SensTemp2" and "Torque5") from Node 5 - to get this via SDO, it would require 4 full CAN frames (2 requests, 2
responses).

In contrast, a PDO message can contain 8 full bytes of data - and it can contain multiple object parameter values within a
single frame. Thus, what would require at least 4 frames with SDO could potentially be done with 1 frame in the PDO
service. The PDO is often seen as the most important CANopen protocol as it carries the bulk of information.

How does the CANopen PDO service work?

For PDOs, the consumer/producer terminology is used. Thus, a producer 'produces data', which it transmits to a
'consumer' (master) using a transmit PDO (TPDO). Conversely, it may receive data from the consumer via a receive PDO
(RPDO). Producer nodes may e.g. be configured to respond to a SYNC trigger broadcasted by the consumer every 100 ms.
Node 5 may then e.g. broadcast below transmit PDO with COB-ID 185:

Note how the data bytes are packed with 3 parameter values. These values reflect real-time data of specific OD entries of
node 5. The nodes that use this information (the consumers) of course need to know how to interpret the PDO data
bytes.

PDO service vs. J1939 PGNs and SPNs

Isn't the PDO service a bit similar to J1939 PGNs & SPNs? Yes, to some extent this is similar to how a specific J1939
parameter group (PG) will contain multiple SPNs/signals (aka data parameters) in the 8 data bytes. The J1939 CAN
frame does not need to waste data bytes on "decoding" information because this is known by the relevant nodes (and
by external tools via e.g. J1939 DBC files or the J1939 PDF standards). The wrinkle is that in CANopen, these 'PDO
mappings' are often configurable and can be changed during the creation of the DCF and/or via the SDO service. For
more details on PDOs, see this article (p. 5).

https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/products/j1939-dbc-file
https://www.nikhef.nl/pub/departments/ct/po/doc/CANopen30.pdf

CANopen data logging - use case examples

Since CANopen is a CAN-based protocol, it is possible to record raw
CANopen frames using a CAN bus data logger. As an example, the
CANedge lets you record CANopen data to an 8-32 GB SD card.

Simply connect it to your application to start logging - and process the
data via free software/APIs. Learn more!

Raw data decoding via CANopen DBC files

As CANopen is based on CAN bus, you can store your CANopen decoding rules in the standardized CAN database
format, a CAN DBC file. With this, you can directly decode your raw CANopen data in open source software/API tools
for the CANedge, including the asammdf GUI, telematics dashboards and Python API tools. Note that you may not have
a CANopen DBC file readily available, but rather your CANopen frame decoding rules may be stored in your EDS/DCF or
in a PDF. In such a case you can take outset in our DBC intro to learn how to construct a CANopen DBC file from scratch
using various free editor tools.

Solutions like the CANedge enable several CANopen logging use cases:

Logging CANopen node
data

Generally, logging
CANopen data can be used
to e.g. analyze operational
data. WiFi CAN loggers can

also be used for e.g.
over-the-air SDOs

learn more

Warehouse fleet
management

CANopen is often used in
EV forklifts/AGVs in
warehouses, where

monitoring e.g. SoC helps
reduce breakdowns and

improve battery life
learn more

Predictive
maintenance

Industrial machinery can
be monitored via IIoT CAN

loggers in the cloud to
predict and avoid

breakdowns based on the
CANopen data

learn more

Machinery diagnostic
blackbox

A CAN logger can serve as a
'blackbox' for industrial

machinery, providing data
for e.g. disputes or rare

issue diagnostics
learn more

https://www.csselectronics.com/pages/can-bus-hardware-products
https://www.csselectronics.com/pages/can-bus-software-api-tools
https://www.csselectronics.com/pages/canopen-data-logger
https://cdn.shopify.com/s/files/1/0579/8032/1980/files/CANedge-CAN-Bus-Data-Logger_th.jpg?v=1629288722
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://www.csselectronics.com/pages/telematics-dashboard-open-source
https://www.csselectronics.com/pages/python-can-bus-api
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/pages/canopen-data-logger
https://www.csselectronics.com/pages/electric-vehicle-data-logger-cloud-battery-telematics
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/pages/predictive-maintenance-can-bus-iot
https://www.csselectronics.com/products/can-logger-sd-canedge1
https://www.csselectronics.com/pages/black-box-can-bus-logger

CAN FD Explained - A Simple Intro
In this guide we introduce CAN FD (CAN Flexible Data-rate) - incl. CAN FD frames, overhead & efficiency, example
applications and logging use cases.

Why CAN FD?
The CAN protocol has been around since 1986 and it's popular: Practically any machine that moves utilizes CAN today -
whether it's cars, trucks, boats, planes or robots.

But with the rise of modern technology, the "Classical" CAN protocol (official term used in ISO 11898-1:2015) is pressured:

● A rise in vehicle functionality is driving an explosion in data
● Networks are increasingly limited by the 1-Mbit/s bandwidth
● To cope, OEMs create complex & costly workarounds

Specifically, Classical CAN struggles with substantial overhead (>50%) as each CAN data frame can only contain 8 data
bytes. Further, the network speed is limited to 1 Mbit/s, restricting the implementation of data-producing features. CAN
FD resolves these issues - making it future-proof.

What is CAN FD?
The CAN FD protocol was pre-developed by Bosch (with industry experts) and released in 2012. It was improved through
standardization and is now in ISO 11898-1:2015. The original Bosch CAN FD version (non-ISO CAN FD) is incompatible with
ISO CAN FD.

CAN FD offers four major benefits:

https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://en.wikipedia.org/wiki/Robert_Bosch_GmbH

#1 Increased length
CAN FD supports up to 64
data bytes per data frame

vs. 8 data bytes for
Classical CAN. This reduces
the protocol overhead and

leads to an improved
protocol efficiency.

#2 Increased speed
CAN FD supports dual bit

rates: The nominal
(arbitration) bit-rate limited

to 1 Mbit/s as in Classical
CAN - and the data bit-rate,

which depends on the
network

topology/transceivers. In
practice, data bit-rates up
to 5 Mbit/s are achievable.

#3 Better reliability
CAN FD uses an improved
cyclic redundancy check
(CRC) and the "protected
stuff-bit counter", which

lower the risk of
undetected errors. This is
e.g. vital in safety-critical
applications like vehicles

and industrial automation.

#4 Smooth transition
CAN FD and Classical CAN
only ECUs can be mixed

under certain conditions.
This allows for a gradual
introduction of CAN FD
nodes, greatly reducing
costs and complexity for

OEMs.

In practice, CAN FD can improve network bandwidth by 3-8x vs Classical CAN, creating a simple solution to the rise in
data.

How does CAN FD work?
So CAN FD seems pretty simple: Speed up the data transmission and pack more data into each message, right? In
practice, however, it's not that straightforward. Below we outline the main challenges that the CAN FD solution had to
solve.

Two key challenges

Before looking at the CAN FD data frame, it's key to understand two core parts of Classical CAN that we want to maintain:

#1 Avoid critical message delays

Why not simply pack Classical CAN frames with 64 bytes
of data? Doing so would reduce overhead and simplify
message interpretation. However, if the bit-rate is
unchanged, this would also block the CAN bus for longer,
potentially delaying mission-critical higher-priority data
frames.

#2 Maintain practical CAN wire lengths

So, more speed is needed to send more data per
message. But why not speed up the entire CAN message
(rather than just the data phase)? This is due to
"arbitration": If 2+ nodes transmit data simultaneously,
arbitration determines which node takes priority. The
"winner" continues sending (without delay), while the
other nodes "back off" during the data transmission.

https://docs.google.com/spreadsheets/d/16XIceuoG_YBlgyFKXxjYQk2016ln3NeEC68yoMFvwkA/edit?usp=sharing

Regarding bit time

During arbitration, a "bit time" provides sufficient delay between each bit to allow every node on the network to react.
To be certain that every node is reached within the bit time, a CAN network running at 1 Mbit/s needs to have a
maximum length of 40 metres (in practice 25 metres). Speeding up the arbitration process would reduce the maximum
length to unsuitable levels.

On the other hand, after arbitration there's an "empty highway" - enabling high speed during the data transmission
(when there is just one node driving the bus-lines). Before the ACK slot - when multiple nodes acknowledge the correct
reception of the data frame - the speed needs to be reduced to the nominal bit-rate.

In short, it is necessary to find a way to only increase the speed during the data transmission.

Solution: The CAN FD frame

The CAN FD protocol introduces an adjusted CAN data frame to enable the extra data bytes and flexible bit-rates. Below
we compare an 11-bit Classical CAN frame vs. an 11-bit CAN FD frame (29-bit is also supported):

Below we go through the differences step-by-step:

CAN FD frame fields explained

RTR vs. RRS: The Remote Transmission Request (RTR) is used in Classical CAN to identify data frames and
corresponding remote frames. In CAN FD, remote frames are not supported at all - the Remote Request Substitution
(RRS) is always dominant (0).

r0 vs. FDF: In Classical CAN, r0 is reserved and dominant (0). In CAN FD, it's named FDF and recessive (1).
After the r0/FDF bit, the CAN FD protocol adds "3 new bits". Note that nodes that are not CAN FD capable produce an
error frame after the FDF bit.

res: This new reserved bit plays the same role as r0 - i.e. it may in the future be set to recessive (1) to denote a new
protocol.

BRS: The Bit Rate Switch (BRS) can be dominant (0), meaning that the CAN FD data frame is sent at the arbitration rate
(i.e. up to max 1 Mbit/s). Setting it to recessive (1) means that the remaining part of the data frame is sent at a higher
bit rate (up to 5 Mbit/s).

ESI: The Error Status Indicator (ESI) bit is by default dominant (0), i.e.'error active'. If the transmitter becomes 'error
passive' it'll be recessive (1) to indicate it is in error passive mode.

https://en.wikipedia.org/wiki/CAN_bus#Remote_frame
https://www.can-cia.org/fileadmin/resources/documents/conferences/2017_schreiner.pdf

DLC: Like in Classical CAN, the CAN FD DLC is 4 bits and denotes the number of data bytes in the frame. The above
table shows how the two protocols use the DLC consistently up to 8 data bytes. To maintain a 4-bit DLC, CAN FD uses
the remaining 7 values from 9 to 15 to denote the number of data bytes used (12, 16, 20, 24, 32, 48, 64).

SBC: The Stuff Bit Count (SBC) precedes the CRC and consists of 3 gray-coded bits and a parity bit. The following Fixed
Stuff-Bit can be regarded as a second parity bit. The SBC is added to improve communication reliability.

CRC: The Cyclic Redundancy Check (CRC) is 15 bit in the Classical CAN, while in CAN FD it's 17 bits (for up to 16 data
bytes) or 21 bits (for 20-64 data bytes). In Classical CAN, there can be 0 to 3 stuff bits in the CRC, while in CAN FD there
are always four fixed stuff bits to improve communication reliability.

ACK: The data phase (aka payload) of the CAN FD data frame stops at the ACK bit, which also marks the end of the
potentially increased bit rate.

Overhead and data efficiency of CAN FD vs. CAN
As evident, the added functionality of CAN FD adds a lot of extra bits vs. Classical CAN - how can this lead to less
overhead?

The answer is that it doesn't - see the below visualization of Classical CAN vs. CAN FD for 3 data bytes. In fact, the
efficiency of CAN FD does not exceed Classical CAN until crossing 8 data bytes. However, by moving towards 64 data
bytes, the efficiency can go from ~50% up towards ~90% (more on this below).

https://en.wikipedia.org/wiki/Gray_code

Need for speed: Turning on bit rate switching

As mentioned, sending 64 data bytes at regular speed would block the CAN bus, reducing the real-time performance. To
solve this, bit rate switching can be enabled to allow the payload to be sent at a higher rate vs the arbitration rate (e.g. 5
Mbit/s vs 1 Mbit/s). Above we illustratively visualize the effect for the 3 data byte and 64 data byte scenarios. Note that the
higher speed applies to the data frame section starting in the BRS bit and ending in the CRC delimiter. Further, most
vehicles today use 0.25-0.5 Mbit/s, meaning that with 5 Mbit/s CAN FD would 10x the speed of the payload transmission.

Mixing Classical CAN and CAN FD nodes

As mentioned earlier, Classical CAN and CAN FD nodes can be mixed under certain conditions. This allows for a
step-by-step migration towards CAN FD, rather than having to switch every ECU in one go. Two scenarios exist:

100% CAN FD system: Here, the CAN FD controllers can freely mix Classical CAN and CAN FD data frames.

Some nodes are legacy Classical CAN: Here, the CAN FD controllers can switch to Classical CAN communication to
avoid error frame reactions from the Classical CAN nodes. Also, during e.g. ECU flashing, the Classical CAN nodes may
be turned off to allow a temporary shift to CAN FD communication.

What is the max bit rate of CAN FD?

A confusing aspect of CAN FD is the max bit rate during the payload phase - as different articles mention different
levels. Some state that practical applications enable up to 8 Mbit/s and theoretically 15 Mbit/s. Others state up to 12
Mbit/s. Further, Daimler state that beyond 5 Mbit/s is doubtful - both as there's no standard for this and because
low-cost automotive Ethernet (10 BASE-T1) is expected to limit the demand for CAN FD at higher speed. So what is
correct?

It depends. Looking at ISO 11898-2 (the transceiver chip standard), it specifies two symmetry parameter sets. It is
recommended to use those with improved symmetry parameters, often advertised as 5 Mbit/s transceivers. The
achievable data phase bit-rate depends on many things. One of the most important is the desired temperature range.
Flashing of an ECU does not require the support of low temperatures. This implies that for ECU flashing, it is possible to
go up to 12 Mbit/s. Another important bit-rate limitation is caused by the chosen topology. Bus-line topology with very
short stubs allows significantly higher bit-rates versus hybrid topologies with long stubs or even stars. Most multi-drop
bus-line networks are limited to 2 Mbit/s for a temperature range of -40 degC to +125 degC. CiA provides appropriate
rules of thumb in the CiA 601-3 network design recommendation. This includes recommendations to set the
sample-points in the data-phase.

CAN FD calculator: Efficiency & baud rate

For a detailed understanding of CAN FD efficiency and bit
rates, see our CAN FD calculator.

The calculator compares Classical CAN vs. CAN FD in
regards to frames and visualizes the frame structures in
response to the settings you provide.

https://www.computer-solutions.co.uk/info/Embedded_tutorials/can_tutorial.htm
https://www.computer-solutions.co.uk/info/Embedded_tutorials/can_tutorial.htm
https://www.can-cia.org/fileadmin/resources/documents/conferences/2017_schreiner.pdf
https://www.csselectronics.com/pages/can-fd-calculator-efficiency-baud-rate

Examples: CAN FD applications
In short, CAN FD enables more data at faster rates. This is key for multiple increasingly relevant use cases:

Electric vehicles
EVs and hybrids use new powertrain
concepts that require far higher bit

rates. Added complexity comes from
new control units related to the

DC/DC inverter, battery, charger,
range extender etc. By 2025 it is

expected that the required bit rate
exceeds CAN - and with the explosive
rise in EVs, this may be the spearhead

of the CAN FD roll-out.

ECU flashing
Vehicle software is becoming

increasingly complex. As such,
performing ECU updates via e.g. the

OBD2 port can take hours today. With
CAN FD, such processes can be made

>4x faster. This use case has been
one of the original drivers behind the

demand for CAN FD by automotive
OEMs.

Robotics
Several applications rely on

time-synced behaviour - e.g. robot
arms with multiple axles. Such

devices often use CANopen and
require multiple CAN frames (PDOs)

to be sent by each controller
time-synced (without interruption
from higher-priority frames). By

shifting to CAN FD, the data can be
sent in a single frame for efficiency.

ADAS & safe driving
Increasingly, advanced driver

assistance systems (ADAS) are being
introduced in passenger cars and

commercial vehicles. This pressures
the bus load of Classical CAN, yet

ADAS is key to improving safety. Here,
CAN FD will be key to enhancing safe

driving in the near future.

Trucks & buses
Trucks & buses utilize long CAN buses
(10-20 meters). As a result, they rely
on slow bit rates (250 kbit/s or 500
kbit/s as per J1939-14). Here, the
upcoming J1939 FD protocol is

expected to enable a significant
improvement in commercial vehicle

features, incl. e.g. ADAS.

Secure CAN bus
As shown in recent CAN hacker

attacks, Classical CAN is vulnerable. If
hackers gain access to the CAN bus

(e.g. over-the-air), they could e.g. turn
off critical functions. CAN FD
authentication via the Secure

Onboard Communication (SecOC)
module may be a key roll-out driver.

Logging CAN FD data - use case examples
With the rise of CAN FD there will be several use cases for logging CAN FD data:

https://www.csselectronics.com/pages/electric-vehicle-data-logger-cloud-battery-telematics
https://www.csselectronics.com/pages/electric-vehicle-data-logger-cloud-battery-telematics
https://www.can-newsletter.org/uploads/media/raw/965a7b8526563428cafd370c9d492897.pdf
https://www.can-newsletter.org/uploads/media/raw/965a7b8526563428cafd370c9d492897.pdf
https://www.csselectronics.com/pages/canopen-tutorial-simple-intro
https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.avnet.com/wps/portal/silica/resources/technical-articles/article/boosting-security-in-cars-with-can-fd/
https://www.avnet.com/wps/portal/silica/resources/technical-articles/article/boosting-security-in-cars-with-can-fd/
https://www.csselectronics.com/pages/secure-can-bus-logging-telematics-intro
https://securityaffairs.co/wordpress/62100/hacking/can-protocol-flaw.html
https://securityaffairs.co/wordpress/62100/hacking/can-protocol-flaw.html

Logging data
from cars

As CAN FD gets rolled out
in new cars, CAN FD data

loggers will be key for OEM
R&D and diagnostics

learn more

Heavy duty fleet
telematics

IoT CAN FD loggers
compatible with J1939 FD
(flexible data-rate) will be
key to future heavy duty

telematics
learn more

Predictive
maintenance

As CANopen FD rolls out,
new industrial machinery

will need CAN FD IoT
loggers to help predict and

avoid breakdowns
learn more

Vehicle/machine
blackbox

A CAN FD logger can serve
as a 'blackbox' for e.g. new

prototype vehicles,
providing data for

diagnostics and R&D
learn more

CAN FD logging - practical considerations

When logging CAN FD data the following considerations are relevant:

#1 ISO CAN FD vs. non-ISO CAN FD

Before the ISO 11898-1:2015 update, the CAN FD standard had a weakness related to error checking. Controllers
adhering to the updated standard are sometimes referred to as "ISO CAN FD". When recording data from an early
prototype CAN FD system you may therefore need to turn on "NON-ISO CAN FD" mode if your device supports this.

#2 Bit rate switch - on/off?

By default, your CAN FD data logger will be able to handle both Classical CAN and CAN FD data messages - without
having to be pre-configured between them. Similarly, you won't have to pre-specify whether bit rate switching is on/off
for pure logging purposes. However, when you transmit data to the CAN bus, you'll need to specify whether to use bit
rate switching or not. If enabled, your data payloads are transmitted at the system's 2nd bit rate, which will typically be
2 or 4 Mbit/s.

#3 Conversion & CAN FD DBC files

CAN FD minimizes the need for handling multi-packet messages. This can greatly simplify the software development
for converting raw CAN FD data to human-readable form, to the benefit of end users of CAN FD analyzers. Further, the
standard CAN database format, DBC, also supports CAN FD conversion rules. As such, it's always recommended that
you collect your scaling rules in a DBC file to enable easy transition between various CAN software like e.g. asammdf
etc.

CAN FD - outlook
CAN FD is predicted to take over Classical CAN in the coming years:

● The first CAN FD capable cars are expected to be sold in 2019/20
● Initial roll-out will likely use 2 Mbit/s, gradually transitioning to 5 Mbit/s
● CANopen FD has been adapted via CiA 1301 1.0
● J1939-22 uses CAN FD data frames

https://www.csselectronics.com/
https://www.csselectronics.com/
https://www.csselectronics.com/pages/can-fd-data-logger
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/pages/predictive-maintenance-can-bus-iot
https://www.csselectronics.com/products/can-logger-sd-canedge1
https://www.csselectronics.com/pages/black-box-can-bus-logger
https://www.computer-solutions.co.uk/info/Embedded_tutorials/can_tutorial.htm
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://www.can-cia.org/news/cia-in-action/view/can-2020-the-future-of-can-technology/2016/3/21/
https://www.can-cia.org/can-knowledge/can/can-fd/
https://can-newsletter.org/uploads/media/raw/788492a55a8f95287b8ea455e2f97ca2.pdf

● CAN is still a growing technology, but recently mainly due to CAN FD
● It's anticipated that in the future, CAN FD will be used in most new development

CAN FD vs. other protocols

Of course, legacy applications with no bandwidth and payload requirements will still use Classical CAN. Further, the
CAN community is already developing the next generation of a CAN data link layer supporting payloads up to 2048
bytes. This approach can be regarded as an alternative to 10 Mbit/s Ethernet. As such, it is still to be determined exactly
what role CAN FD will play in the future - but it will definitely be on the rise.

https://www.can-cia.org/fileadmin/resources/documents/conferences/2017_schreiner.pdf
https://www.can-cia.org/fileadmin/resources/documents/conferences/2017_schreiner.pdf

LIN Bus Explained - A Simple Intro
In this guide we introduce the Local Interconnect Network (LIN) protocol basics incl. LIN vs. CAN, use cases, how LIN works
and the six LIN frame types.

What is LIN bus?
LIN bus is a supplement to CAN bus. It offers lower performance and reliability - but also drastically lower costs. Below we
provide a quick overview of LIN bus and a comparison of LIN bus vs. CAN bus.

● Low cost option (if speed/fault tolerance are not critical)
● Often used in vehicles for windows, wipers, air condition etc..
● LIN clusters consist of 1 master and up to 16 slave nodes
● Single wire (+ground) with 1-20 kbit/s at max 40 m bus length
● Time triggered scheduling with guaranteed latency time
● Variable data length (2, 4, 8 bytes)
● LIN supports error detection, checksums & configuration
● Operating voltage of 12V
● Physical layer based on ISO 9141 (K-line)
● Sleep mode & wakeup support
● Most newer vehicles have 10+ LIN nodes

LIN bus vs CAN bus

● LIN is lower cost (less harness, no license fee, cheap nodes)
● CAN uses twisted shielded dual wires 5V vs LIN single wire 12V
● A LIN master typically serves as gateway to the CAN bus
● LIN is deterministic, not event driven (i.e. no bus arbitration)
● LIN clusters have a single master - CAN can have multiple
● CAN uses 11 or 29 bit identifiers vs 6 bit identifiers in LIN
● CAN offers up to 1 Mbit/s vs. LIN at max 20 kbit/s

https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://en.wikipedia.org/wiki/Local_Interconnect_Network#Overview
https://en.wikipedia.org/wiki/Local_Interconnect_Network#Overview
https://www.electronicdesign.com/automotive/lin-interface-and-automotive-interconnects-perfect-match
https://en.wikipedia.org/wiki/CAN_bus#Data_transmission

LIN bus history

Below we briefly recap the history of the LIN protocol:

● 1999: LIN 1.0 released by the LIN Consortium (BMW, VW, Audi, Volvo, Mercedes-Benz, Volcano & Motorola)
● 2000: The LIN protocol was updated (LIN 1.1, LIN 1.2)
● 2002: LIN 1.3 released, mainly changing the physical layer
● 2003: LIN 2.0 released, adding major changes (widely used)
● 2006: LIN 2.1 specification released
● 2010: LIN 2.2A released, now widely implemented versions
● 2010-12: SAE standardized LIN as SAE J2602, based on LIN 2.0
● 2016: CAN in Automation standardized LIN (ISO 17987:2016)

LIN bus future

The LIN protocol serves an increasingly important role in providing low cost feature expansion in modern vehicles. As
such, LIN bus has exploded in popularity in the last decade with >700 million nodes expected in automotives by 2020 vs
~200 million in 2010.

https://en.wikipedia.org/wiki/Local_Interconnect_Network
https://www.lin-cia.org/fileadmin/microsites/lin-cia.org/resources/documents/LIN-Spec_Pac2_1.pdf
https://www.lin-cia.org/fileadmin/microsites/lin-cia.org/resources/documents/LIN_2.2A.pdf
https://www.lin-cia.org/en/standards/
https://en.wikipedia.org/wiki/SAE_International

Cybersecurity & new protocols

However, with the rise of LIN also comes increased scrutiny in regards to cyber security. LIN faces similar risk
exposures as CAN - and since LIN plays a role in e.g. the seats and steering wheel, a resolution to these risks may be
necessary. The future automotive vehicle networks are seeing a rise in CAN FD, FlexRay and automotive Ethernet. While
there's uncertainty regarding the role each of these systems will play in future automotives, it's expected that LIN bus
clusters will remain vital as the low cost solution for an ever increasing demand for features in modern vehicles.

Master/slave vs. commander/responder

As part of designing a more inclusive wording for LIN bus, the CiA/ISO/SAE agreed wording will transition to
commander/responder. As such, this will be the de facto standard wording used in most guidelines and LIN bus
specifications going forward.

LIN bus applications
Today, LIN bus is a de facto standard in practically all modern vehicles - with examples of automotive use cases below:

● Steering wheel: Cruise control, wiper, climate control, radio
● Comfort: Sensors for temperature, sun roof, light, humidity
● Powertrain: Sensors for position, speed, pressure
● Engine: Small motors, cooling fan motors
● Air condition: Motors, control panel (AC is often complex)
● Door: Side mirrors, windows, seat control, locks
● Seats: Position motors, pressure sensors
● Other: Window wipers, rain sensors, headlights, airflow

Further, LIN bus is also being used in other industries:

● Home appliances: Washing machines, refrigerators, stoves
● Automation: Manufacturing equipment, metal working

Example: LIN vs CAN window control

LIN nodes are typically bundled in clusters, each with a master that interfaces with the backbone CAN bus.

Example: In a car's right seat you can roll down the left seat window. To do so, you press a button to send a message via
one LIN cluster to another LIN cluster via the CAN bus. This triggers the second LIN cluster to roll down the left seat
window.

https://www.jstage.jst.go.jp/article/ipsjjip/25/0/25_220/_pdf
https://www.jstage.jst.go.jp/article/ipsjjip/25/0/25_220/_pdf
https://ww1.microchip.com/downloads/en/market_communication/analogoct02.pdf

How does LIN bus work?
LIN communication at its core is relatively simple: A master node loops through each of the slave nodes, sending a
request for information - and each slave responds with data when polled. The data bytes contain LIN bus signals (in raw
form). However, with each specification update, new features have been added to the LIN specification - making it more
complex. Below we cover the basics: The LIN frame & six frame types.

The LIN frame format

In simple terms, the LIN bus message frame consists of a header and a response. Typically, the LIN master transmits a
header to the LIN bus. This triggers a slave, which sends up to 8 data bytes in response. This overall LIN frame format can
be illustrated as below:

LIN frame fields

Break: The Sync Break Field (SBF) aka Break is minimum 13 + 1 bits long (and in practice most often 18 + 2 bits). The
Break field acts as a “start of frame" notice to all LIN nodes on the bus.

Sync: The 8 bit Sync field has a predefined value of 0x55 (in binary, 01010101). This structure allows the LIN nodes to
determine the time between rising/falling edges and thus the baud rate used by the master node. This lets each of
them stay in sync.

Identifier: The Identifier is 6 bits, followed by 2 parity bits. The ID acts as an identifier for each LIN message sent and
which nodes react to the header. Slaves determine the validity of the ID field (based on the parity bits) and act via
below:

1. Ignore the subsequent data transmission
2. Listen to the data transmitted from another node
3. Publish data in response to the header

Typically, one slave is polled for information at a time - meaning zero collision risk (and hence no need for arbitration).
Note that the 6 bits allow for 64 IDs, of which ID 60-61 are used for diagnostics (more below) and 62-63 are reserved.

Data: When a LIN slave is polled by the master, it can respond by transmitting 2, 4 or 8 bytes of data. The data length
can be customized, but it is typically linked to the ID range (ID 0-31: 2 bytes, 32-47: 4 bytes, 48-63: 8 bytes). The data
bytes contain the actual information being communicated in the form of LIN signals. The LIN signals are packed within
the data bytes and may be e.g. just 1 bit long or multiple bytes.

Checksum: As in CAN, a checksum field ensures the validity of the LIN frame. The classic 8 bit checksum is based on
summing the data bytes only (LIN 1.3), while the enhanced checksum algorithm also includes the identifier field (LIN
2.0).

Logging LIN bus data

The CANedge lets you easily log LIN bus data to an 8-32
GB SD card. Simply connect it to your LIN application to
start logging - and process the data via free software/APIs.

For example, the free asammdf GUI/API lets you DBC
decode your LIN data to physical values and e.g. plot your
LIN signals. Learn more

Six LIN frame types
Multiple types of LIN frames exist, though in practice the vast
majority of communication is done via “unconditional frames".

Note also that each of the below follow the same basic LIN
frame structure - and only differ by timing or content of the data
bytes. Below we briefly outline each LIN frame type:

https://www.csselectronics.com/pages/can-bus-hardware-products
https://www.csselectronics.com/pages/can-bus-software-api-tools
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://www.csselectronics.com/pages/lin-bus-data-logger

Unconditional
Frames

The default form
of

communication
where the

master sends a
header,

requesting
information from
a specific slave.

The relevant
slave reacts
accordingly

Event Trigger
Frames

The master polls
multiple slaves. A
slave responds if
its data has been
updated, with its
protected ID in

the 1st data byte.
If multiple
respond, a

collision occurs
and the master

defaults to
unconditional

frames

Sporadic Frames
Only sent by the

master if it
knows a specific

slave has
updated data.

The master "acts
as a slave" and

provides the
response to its
own header -

letting it provide
slave nodes with
"dynamic" info

Diagnostic
Frames

Since LIN 2.0, IDs
60-61 are used

for reading
diagnostics from
master or slaves.

Frames always
contain 8 data
bytes. ID 60 is
used for the

master request,
61 for the slave

response

User Defined
Frames

ID 62 is a
user-defined

frame which may
contain any type
of information

Reserved
Frames

Reserved frames
have ID 63 and

must not be used
in LIN 2.0

conforming LIN
networks

Advanced LIN topics
Below we include two advanced topics - click to expand.

The LIN Node Configuration File (NCF) and LIN Description File (LDF)

To quickly set up LIN bus networks, off-the-shelf LIN nodes come with Node Configuration Files (NCF). The NCF details
the LIN node capabilities and is a key part of the LIN topology.

An OEM will then combine these node NCFs into a cluster file, referred to as a LIN Description File (LDF). The master
then sets up and manages the LIN cluster based on this LDF - e.g. the time schedule for headers.

Note that the LIN bus nodes can be re-configured by using the diagnostic frames described earlier. This type of
configuration could be done during production - or e.g. everytime the network is started up. For example, this can be
used to change node message IDs.

If you're familiar with CANopen, you may see parallels to the Device Configuration File used to pre-configure CANopen
nodes - and the role of Service Data Objects in updating these configurations.

https://www.csselectronics.com/pages/canopen-tutorial-simple-intro
https://www.csselectronics.com/pages/canopen-tutorial-simple-intro#object-dictionary

LIN Sleep & Wakeup

A key aspect of LIN is not only saving costs, but also power.

To achieve this, each LIN slave can be forced into sleep mode by the master sending a diagnostic request (ID 60) with
the first byte equal to 0. Each slave also automatically sleeps after 4 seconds of bus inactivity.

The slaves can be woken up by either the master or slave nodes sending a wake up request. This is done by forcing the
bus to be dominant for 250-5000 microseconds, followed by a pause for 150-250 ms. This is repeated up to 3 times if
no header is sent by the master. After this, a pause of 1.5 seconds is required before sending a 4th wake up request.
Typically nodes wake up after 1-2 pulses.

LIN Description File (LDF) vs. DBC files
As part of your LIN data logger workflow, you may need to decode your raw LIN bus data to physical values. Specifically,
this involves extracting LIN signals from the LIN frame payload and decoding these to human-readable form.

This process of LIN bus decoding is similar to CAN bus decoding and requires the same information:

● ID: Which LIN frame ID contains the LIN bus signal
● Name: The LIN signal name should be known
● Start bit: Start position of the LIN signal in the payload
● Length: Length of the LIN bus signal
● Endianness: LIN signals are little endian (Intel byte order)
● Scale: How to multiply the decimal value of the LIN signal bits
● Offset: By what constant should the LIN signal value be offset
● Unit/Min/Max: Additional supporting information (optional)

This information is typically available as part of the LIN Description File (LDF) for a local interconnect network. However,
since many software tools do not natively support the LDF format, we explain below how to use DBC files as an
alternative.

LIN Description File (LDF) vs. DBC files

As evident from our CAN bus intro and DBC file intro, the above entries are equivalent to the information stored in a
CAN DBC file. This means that a simple method for storing LIN bus decoding rules is to use the DBC file format, which is
supported by many software and API tools (incl. the CANedge software tools like asammdf). For example, you can load
a LIN DBC file and your raw LIN bus data from the CANedge in asammdf to extract LIN bus signals from the data, which
you can then plot, analyze or export.

In many cases, you may not have a LIN DBC file directly available, but instead you may have a LIN description file (LDF).
Below we therefore focus on how you can convert the relevant LIN signal information into the DBC format.

Note: The LDF typically contains various other information relevant to the operation of the LIN bus, which we do not
focus on here. For a full deep-dive on the LIN protocol and the a detailed description of the LDF specification, see the
LIN protocol PDF standard.

How to convert a LIN Description File (LDF) to DBC [incl. Examples]

Below we provide an example to showcase how you can extract LIN signal information from an LDF and enter it into a
DBC file. We use a very simplified LIN description file (with only one signal and excluding some sections).
You can expand the below examples to see the LIN signal, BatteryVoltage, in the LDF format and in the DBC format.
You can also download a raw LIN bus log file (MF4) from the CANedge2 with data for this signal, which you can open
and DBC decode in asammdf:

Example: BatteryVoltage signal (LDF)

https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.csselectronics.com/pages/can-bus-software-api-tools
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://lin-cia.org/fileadmin/microsites/lin-cia.org/resources/documents/LIN_2.2A.pdf
https://canlogger1000.csselectronics.com/files/lin-intro/LIN_voltage_example.MF4
https://www.csselectronics.com/pages/mf4-mdf4-measurement-data-format
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2

download .ldf | download .dbc

Guide to LDF to DBC conversion

In short, to convert an LDF file to DBC, you'll go through the following steps for each LIN signal:

● Get the LIN signal name and length from the Signals section
● Get the LIN signal message name, ID and length from the Frames section
● Get the LIN signal bit start from the Frames section
● Go to the LDF Signal_encoding_types section and find "Enc_[signal_name]"
● Get remaining info via the syntax: 'physical_value, [min], [max], [scale], [offset], "[unit]" ;'

If you're looking to create your own LIN DBC file, we suggest you review our DBC file introduction for details on the
syntax, as well as DBC editor tools.

Minor pitfalls

The conversion from LDF to DBC is not entirely 1-to-1. In particular, note how the LIN signal BatteryVoltage has 2
entries for the physical value, one for the decimal range 0 to 32000 and one for 32001 to 65533. In this specific case,
only the data in the first range are valid (the unit is "invalid" for the 2nd range). However, in some cases there can be
multiple ranges that require separate scaling factors - something which is not possible to handle in the DBC file format.
In this case, you will need to choose one of the ranges and e.g. treat results outside this range as invalid.

This is also the simplest way to handle the LIN signal 'logical_value' entries in the Signal_encoding_types section. These
typically reflect how specific values of the LIN signal should be treated (e.g. as errors). One way of treating these entries
would be to ignore them and possibly exclude them as part of your data post processing - similar to how FF byte values
in CAN bus are often excluded as they represent invalid or N/A data.

LIN bus data logging - use case examples
LIN bus data logging is relevant across various use cases:

Vehicle CAN/LIN
development

Logging CAN/LIN data via a
hybrid logger is key to OEM
vehicle development and

can be used in optimization
or diagnostics

learn more

Field prototype
telematics

CAN/LIN data from
automotive prototype

equipment can be collected
at scale using IoT CAN/LIN
hybrid loggers to speed up

R&D
learn more

Predictive maintenance
Industrial machinery can

be monitored via IoT
CAN/LIN loggers in the

cloud to predict and avoid
breakdowns via prediction

models
learn more

Rare LIN issue
diagnostics

A LIN bus logger can serve
as a 'blackbox' for

industrial machinery,
providing data for e.g.
disputes or rare issue

diagnostics
learn more

https://canlogger1000.csselectronics.com/files/lin-intro/LIN_voltage_example.ldf
https://canlogger1000.csselectronics.com/files/lin-intro/LIN_voltage_example.dbc
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://canlogger1000.csselectronics.com/img/LIN-bus-data-logger-analyzer-hybrid.svg
https://canlogger1000.csselectronics.com/img/J1939-vehicle-telematics.svg
https://www.csselectronics.com/pages/lin-bus-data-logger
https://www.csselectronics.com/pages/j1939-data-logger-wifi-telematics-fleet-management
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/pages/predictive-maintenance-can-bus-iot
https://www.csselectronics.com/products/can-logger-sd-canedge1
https://www.csselectronics.com/pages/black-box-can-bus-logger

Practical considerations for LIN data logging
Below we list key considerations for your LIN bus data logging:

LIN logger vs. LIN interface

To record LIN bus data, you'll need a LIN bus data logger and/or interface. A LIN bus data logger with SD card has the
advantage of letting you record data in standalone mode - i.e. during actual usage of the vehicle. An interface, on the
other hand, is helpful during e.g. dyno testing of the vehicle functionality.

For standalone LIN loggers, it's key that the device is plug & play, compact and low cost - so as to allow it to be used in
scale applications across e.g. vehicle fleets.

CAN vs. LIN support

Often, you'll want to combine LIN data with CAN data to get a holistic perspective of the vehicle in use - for example:

● How is driving behavior correlated with use of various LIN bus features?
● Do issues arise in the interaction between LIN masters and the CAN bus?
● Are LIN related issues correlated with certain CAN based events?

To combine this data, you'll want a hybrid CAN/LIN logger with multiple channels. Further, CAN FD support is also key
as it's expected to increasingly be rolled out in new vehicles.

WiFi

Collecting logged LIN bus data can be a hassle if you need to physically extract the data from e.g. large vehicle test
fleets. Here, a WiFi enabled CAN/LIN logger can be a powerful solution. You simply specify a WiFi hotspot that the
vehicle will get in range of from time-to-time - and the data will then be uploaded automatically from the SD card when
in range. It's also possible to add a cellular hotspot within the vehicle for near real-time data transfer.

https://www.csselectronics.com/pages/lin-bus-data-logger
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro

CAN DBC File Explained - A Simple Intro
In this tutorial we explain DBC files (CAN bus databases), incl. structure, syntax, examples - and a cool DBC editor
playground. To get practical, we also include real J1939/OBD2 data and DBC files - which you can load in free open source
CAN tools.

What is a CAN DBC file?
A CAN DBC file (CAN database) is a text file that contains information for decoding raw CAN bus data to 'physical values'.

To understand what 'raw CAN data' looks like, see the below example CAN frame from a truck:

CAN ID Data bytes
0CF00400 FF FF FF 68 13 FF FF FF

https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-dbc-file-database-intro#can-dbc-editor-playground
https://www.csselectronics.com/pages/can-dbc-file-database-intro#can-dbc-editor-playground

If you have a CAN DBC that contains decoding rules for the CAN ID, you can 'extract' parameters (signals) from the data
bytes. One such signal could be EngineSpeed:

Message Signal Value Unit
EEC1 EngineSpeed 621 rpm

To understand how DBC decoding works, we will explain the DBC syntax and provide step-by-step decoding examples.

DBC message & signal syntax

Let us start with a real CAN DBC file example. Below is a demo J1939 DBC file that contains decoding rules for speed
(km/h) and engine speed (rpm). You can copy this into a text file, rename it as e.g. j1939.dbc and use it to extract
speed/RPM from trucks, tractors or other heavy-duty vehicles.

J1939 DBC demo example

VERSION ""

NS_ :
CM_
BA_DEF_
BA_
BA_DEF_DEF_

BS_:

BU_:

BO_ 2364540158 EEC1: 8 Vector_XXX
SG_ EngineSpeed : 24|16@1+ (0.125,0) [0|8031.875] "rpm" Vector_XXX

BO_ 2566844926 CCVS1: 8 Vector_XXX
SG_ WheelBasedVehicleSpeed : 8|16@1+ (0.00390625,0) [0|250.996] "km/h" Vector_XXX

CM_ BO_ 2364540158 "Electronic Engine Controller 1";
CM_ SG_ 2364540158 EngineSpeed "Actual engine speed which is calculated over a minimum crankshaft angle
of 720 degrees divided by the number of cylinders....";
CM_ BO_ 2566844926 "Cruise Control/Vehicle Speed 1";
CM_ SG_ 2566844926 WheelBasedVehicleSpeed "Wheel-Based Vehicle Speed: Speed of the vehicle as calculated
from wheel or tailshaft speed.";
BA_DEF_ SG_ "SPN" INT 0 524287;
BA_DEF_ BO_ "VFrameFormat" ENUM "StandardCAN","ExtendedCAN","reserved","J1939PG";
BA_DEF_ "BusType" STRING ;
BA_DEF_ "ProtocolType" STRING ;
BA_DEF_DEF_ "SPN" 0;
BA_DEF_DEF_ "VFrameFormat" "J1939PG";
BA_DEF_DEF_ "BusType" "";
BA_DEF_DEF_ "ProtocolType" "";
BA_ "ProtocolType" "J1939";
BA_ "BusType" "CAN";
BA_ "VFrameFormat" BO_ 2364540158 3;
BA_ "VFrameFormat" BO_ 2566844926 3;
BA_ "SPN" SG_ 2364540158 EngineSpeed 190;
BA_ "SPN" SG_ 2566844926 WheelBasedVehicleSpeed 84;

At the heart of a DBC file are the rules that describe how to decode CAN messages and signals:

https://www.csselectronics.com/products/j1939-dbc-file

DBC message syntax explained

● A message starts with BO_ and the ID must be unique and in decimal (not hexadecimal)
● The DBC ID adds adds 3 extra bits for 29 bit CAN IDs to serve as an 'extended ID' flag
● The name must be unique, 1-32 characters and may contain [A-z], digits and underscores
● The length (DLC) must be an integer between 0 and 1785
● The sender is the name of the transmitting node, or Vector__XXX if no name is available

DBC signal syntax explained

● Each message contains 1+ signals that start with SG_
● The name must be unique, 1-32 characters and may contain [A-z], digits and underscores
● The bit start counts from 0 and marks the start of the signal in the data payload
● The bit length is the signal length
● The @1 specifies that the byte order is little-endian/Intel (vs @0 for big-endian/Motorola)
● The + informs that the value type is unsigned (vs - for signed signals)
● The (scale,offset) values are used in the physical value linear equation (more below)
● The [min|max] and unit are optional meta information (they can e.g. be set to [0|0] and "")
● The receiver is the name of the receiving node (again, Vector__XXX is used as default)

Example: Extract physical value of EngineSpeed signal
To understand how DBC decoding works, we'll show how to extract the signal EngineSpeed from the CAN frame in the
intro:

CAN ID Data bytes
0CF00400 FF FF FF 68 13 FF FF FF

1# Match the CAN ID vs DBC ID

In practice, most raw CAN data log files contain 20-80 unique CAN IDs. As such, the first step is to map each CAN ID to
the relevant conversion rules in the DBC. For regular 11-bit CAN IDs, this can simply be done by mapping the decimal
value of the CAN ID to the DBC CAN IDs. For extended 29-bit CAN IDs, a mask (0x1FFFFFFF) needs to be applied to the
32-bit DBC ID to get the 29-bit CAN ID - which can then be mapped against the log file.

To easily convert between the IDs, see the 'DBC ID vs CAN ID' sheet in our DBC editor playground.

Regarding J1939 PGN conversion

In this example we directly map the 29-bit CAN ID to the 'masked' DBC ID. In practice, J1939 conversion is often done by
extracting the 18-bit J1939 PGN from the CAN ID and the DBC ID and then comparing the PGNs.

The method depends on your software. In the CANedge tools like asammdf and our Python API tools, loading a J1939
DBC will automatically make the tools use J1939 PGN matching.

2# Extract the signal bits

Next, use the DBC bit start, length and endianness to extract the relevant bits from the CAN frame data payload. In this
example, the start bit is 24 (meaning byte 3 when counting from 0) and the bit length is 16 (2 bytes):

FF FF FF 68 13 FF FF FF

Big endian vs. little-endian (advanced)

In the example, we use little-endian, meaning that the 'bit start' in the DBC
file reflects the position of least-significant bit (LSB). If you add a DBC signal in
a DBC file viewer (e.g. Vector CANDB++), the LSB is also used as the bit start
in the DBC editor.

If you instead add a big-endian signal in a DBC editor GUI, you'll still see the
LSB as the bit start - but when you save the DBC, the bit start is set to the
most significant bit (MSB) in the signal. This approach makes GUI editing
more intuitive, but can be a confusing if you switch between a GUI and text
editor. To understand this fully, check out our CAN DBC editor playground.

3# Scale the extracted bits

The EngineSpeed signal is little-endian (@1) and we therefore need to reorder the byte sequence from 6813 to 1368.
Next, we convert the HEX string to decimal and apply the linear conversion:

physical_value = offset + scale * raw_value_decimal
621 rpm = 0 + 0.125 * 4968

In short, the EngineSpeed physical value (aka scaled engineering value) is 621 rpm.

https://docs.google.com/spreadsheets/d/1X6VQBkqRX0a6QLd4oFbAos_ps3zrpVc86CVGd67DoSs/edit#gid=412686481
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://github.com/CSS-Electronics/api-examples
https://docs.google.com/spreadsheets/d/1X6VQBkqRX0a6QLd4oFbAos_ps3zrpVc86CVGd67DoSs/edit?usp=sharing

4# DBC decode your full dataset

Steps 1-3 take outset in a single CAN frame. In practice, you'll decode raw data from e.g. vehicles, machines or boats
with millions of CAN frames, timestamps, several unique CAN IDs and sometimes hundreds of signals.

To handle this complexity, specialized software is used to decode raw CAN data into human-readable form by loading
the data log files and related DBC file(s). To illustrate what the output may look like, we've added a snippet of DBC
decoded J1939 data logged with a CANedge. The data has been converted via asammdf, filtered to include a set of
relevant signals and exported as CSV:

timestamps,ActualEnginePercentTorque,EngineSpeed,EngineCoolantTemperature,EngineOilTemperature1,EngineFu
elRate,EngineTotalIdleHours,FuelLevel1,Latitude,Longitude,WheelBasedVehicleSpeed
2020-01-13 16:00:13.259449959+01:00,0,1520.13,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.268850088+01:00,0,1522.88,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.270649910+01:00,0,1523.34,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.271549940+01:00,0,1523.58,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.278949976+01:00,0,1525.5,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.289050102+01:00,0,1527.88,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.299000025+01:00,0,1528.13,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.308300018+01:00,0,1526.86,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.309099913+01:00,0,1526.75,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.317199945+01:00,0,1526.45,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.319149971+01:00,0,1526.38,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.320349932+01:00,0,1526.15,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.23
2020-01-13 16:00:13.326800108+01:00,0,1524.93,92,106,3.8,1868.3,52,40.6440124,-76.1223603,86.25
…

CAN DBC editor playground
Adding or editing signals in your DBC file can be confusing. To help you better understand how this works, we've created
a very basic online 'CAN DBC editor playground'. You can open it and edit the yellow cells - or make a copy for personal
use. Feel free to bookmark the editor and share it!

J1939/OBD2 data & DBC samples
The best way to learn more about DBC conversion of raw CAN bus data is to try it out. Below you can download raw
J1939/OBD2 data from the CANedge2. The zip also includes an OBD2 DBC and a demo J1939 DBC.

Via the link, you can also download the free asammdf GUI to open the data & DBC files. Try plotting EngineSpeed as an
example. Download the sample data & dbc files.

Advanced: Meta info, attributes & multiplexing
In this section we briefly outline some of the more advanced topics of CAN DBC files, incl. meta info, attributes, value
tables and multiplexing. If you're new to DBC files you can optionally skip this section.

Comments (message/signal names, ...)

The DBC file can contain various extra information and below we outline the most common types. This information is
stored in the DBC file after all the messages. The comment attribute lets you map a 1-255 character comment to a
message ID or signal name, e.g. to provide more information. Example for EEC1 message:

CM_ BO_ 2364540158 "Electronic Engine Controller 1"

https://www.csselectronics.com/
https://www.csselectronics.com/pages/can-dbc-file-database-intro#can-dbc-editor-playground
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://canlogger.csselectronics.com/canedge-getting-started/log-file-tools/

Example for EngineSpeed signal:

CM_ SG_ 2364540158 EngineSpeed "Actual engine speed which is calculated over
a minimum crankshaft angle of 720 degrees divided by the number of cylinders....";

Attributes: Frame format, SPN IDs, …

Custom attributes can be added to messages and signals in a similar way as the comment syntax. A typical attribute is
the VFrameFormat, which can be used to describe the message frame type. It is initialized as below:
BA_DEF_ BO_ "VFrameFormat" ENUM "StandardCAN","ExtendedCAN","reserved","J1939PG";

Once initialized, a message can be mapped as follows (indexing from 0):

BA_ "VFrameFormat" BO_ 2364540158 3;

In this case, we inform that the message EEC1 is of the J1939 PGN type, which may result in specific display or handling
in various DBC editor GUI tools, as well as data processing tools.

Similarly, you can add J1939 SPN IDs as an attribute as below:

BA_DEF_ SG_ "SPN" INT 0 524287;
BA_ "SPN" SG_ 2364540158 EngineSpeed 190;

Here, EngineSpeed is assigned the SPN 190. You might find it more natural to do this in the opposite way - i.e. use the
SPN IDs in the message/signal section, then map the SPN names via attributes. While you can definitely do this, it is not
the most common convention. Further, the first character in a CAN DBC signal name cannot be a number - so you'd
need to write e.g. _190 or SPN_190.

Value tables

Some CAN DBC signals are 'state variables', such as gear-shift, diagnostic trouble codes, status codes etc. These take
discrete values and will require a mapping table to enable interpretation.

The CAN DBC format enables this via value tables, which let you assign a state description to the physical decimal value
of each state of a signal. The states should be in descending order.

Example:

VAL_ 2297441534 MaterialDropActiveStatus 3 "NotAvailable" 2 "Error" 1 "On" 0 "Off" ;

Multiplexed signals (OBD2 DBC example)

Multiplexing is sometimes used in CAN bus communication, with perhaps the most known example being within OBD2
communication. Consider for example the below OBD2 response frames:

7E8 03 41 11 30 FF FF FF FF
7E8 03 41 0D 37 FF FF FF FF

Here, both response frames carry 1 byte of data in byte 3, yet despite the CAN ID being identical, the interpretation of
the data differs between the two frames. This is because byte 2 serves as a multiplexer, specifying which OBD2 PID the
data is coming from. To handle this in a DBC file context, the below syntax can be applied:

https://www.csselectronics.com/pages/obd2-pid-table-on-board-diagnostics-j1979

BO_ 2024 OBD2: 8 Vector__XXX
SG_ S1_PID_0D_VehicleSpeed m13 : 31|8@0+ (1,0) [0|255] "km/h" Vector__XXX
SG_ S1_PID_11_ThrottlePosition m17 : 31|8@0+ (0.39216,0) [0|100] "%" Vector__XXX
SG_ S1 m1M : 23|8@0+ (1,0) [0|255] "" Vector__XXX
SG_ Service M : 11|4@0+ (1,0) [0|15] "" Vector__XXX
...
SG_MUL_VAL_ 2024 S1_PID_0D_VehicleSpeed S1 13-13;
SG_MUL_VAL_ 2024 S1_PID_11_ThrottlePosition S1 17-17;
SG_MUL_VAL_ 2024 S1 Service 1-1;

Here, the M in the Service signal serves as the 'multiplexor signal'. In this case, it toggles which OBD2 service mode is
used (mode 01, 02, ...). The signal S1 is multiplexed by Service, which is evident from the SG_MUL_VAL_ field where the
two are grouped. As evident, the signal S1 has the value m1 after the signal name, which means that if the Service
signal takes the value 1, the data reflects the OBD2 service mode 01.

The above is referred to as simple multiplexing. But CAN DBC files also support extended multiplexing, where a
multiplexed signal (in this case S1) can also be a multiplexor and thus control the interpretation of other parts of the
data payload. To see this, note that S1 takes the same role as Service in the syntax, adding an M after m1 and being
grouped with the two OBD2 PIDs, speed and throttle position.

Extended multiplexing works as before: If S1 takes the value 13 (HEX 0D), it means that only signals that are A) part of
the S1 group and B) have a multiplexer switch value of 13 should be taken into account. In this example, it means that
byte 4 reflects data for vehicle speed. If byte 3 equals 17 (HEX 11), byte 4 reflects data for the throttle position instead.

DBC multiplexing and extended multiplexing is an advanced topic and not supported by all data processing tools.
However, you can use e.g. the CANDB++ DBC editor to more easily view and understand DBC files with multiplexing,
like the OBD2 DBC: obd2 dbc file

The OBD2 DBC file can be used together with our CANedge CAN loggers for the purpose of decoding OBD2 frames in
e.g. asammdf or our Python API modules. For more on this topic, see Vector's guide to extended multiplexing in DBC
files here.

DBC software tools (editing & processing)
Software that uses CAN DBC files can be split in two groups: Editing & data processing.

DBC editor tools

● Vector CANDB++: The free demo version of Vector's CANalyzer includes a useful version of CANDB++, the Vector
DBC editor. It offers the most extensive functionality available, including quick "consistency checks" of DBC files

● Kvaser Database Editor: Kvaser provides a free and easy-to-use CAN DBC editor, which includes the ability to
append DBC files and visualize the signal construction

● canmatrix: This open source Python DBC module lets you load DBC files, edit them and export them to other
formats. It is used in e.g. asammdf and our Python API

CAN data processing tools

Most CAN data processing tools support DBC files - including below:

● asammdf GUI: The asammdf GUI lets you load raw MDF4 data and DBC convert it to human-readable form - as
well as create quick plots, analyses and exports

● Python API: Our Python API lets you automate the DBC conversion of your data e.g. for large-scale data analysis
or as part of telematics dashboard integrations

● Other tools: Our MDF4 converters let you quickly convert your CANedge MF4 data to e.g. Vector ASC, PEAK TRC
and more

https://www.csselectronics.com/pages/obd2-dbc-file
https://www.csselectronics.com/
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://www.csselectronics.com/pages/python-can-bus-api
https://assets.vector.com/cms/content/know-how/_application-notes/AN-ION-1-0521_Extended_Signal_Multiplexing.pdf
https://github.com/ebroecker/canmatrix
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://github.com/CSS-Electronics/api-examples
https://www.csselectronics.com/pages/telematics-dashboard-open-source
https://www.csselectronics.com/pages/mdf4-converters-mf4-asc-csv
https://www.csselectronics.com/pages/mf4-mdf4-measurement-data-format

How to create a DBC file?

Getting started: If you need to construct a new DBC file, we recommend using one of the DBC editors above. For
beginners, we recommend the Kvaser DBC editor. When creating a new DBC file, you can typically select a DBC
template (e.g. a CAN FD DBC, J1939 DBC, NMEA 2000 DBC etc). Next, start by adding a single message and a single
signal to the DBC and save it.

To ensure your DBC looks OK, we recommend to open the DBC in a text editor. This way you can verify that the basic
DBC syntax looks as you'd expect - and you can use this version as a benchmark for comparison. It's a good idea to
maintain git revisioning on any changes to the DBC from here.

Test your DBC: As a second step, we recommend to test the DBC file using a CAN bus decoder software tool. For
example, if you're using a CANedge CAN bus data logger to record raw CAN data from your application, you can use the
free CAN decoder software, asammdf, to load your raw data and your DBC file. This way you can quickly extract the
signal you added in the DBC - and verify via a visual plot that the construction looks OK.

Expand your DBC: Next, you can add any remaining CAN messages and signals, as well as comments/descriptions,
value tables etc. We recommend to do regular checks as before to ensure the construction is OK.

Check consistency: Finally, we recommend doing a full consistency check both in Vector's DBC editor, CANDB++, and
Kvaser's DBC editor. In CANDB++ select 'File/Consistency Check' and keep an eye out for critical errors (though note
that your DBC may be sufficiently valid for most tools, even if some issues are reported). In the Kvaser database editor,
you can select each message to quickly spot signals with invalid fields (they'll be highlighted in yellow). Once you are
done, we always recommend doing a visual analysis of your scaled CAN data to ensure that you do not have e.g.
endianness, scale factor or offset errors.

https://www.csselectronics.com/pages/can-fd-data-logger
https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/pages/marine-telematics-boat-data
https://www.csselectronics.com/

CAN Bus Errors Explained - A Simple Intro
Need a practical intro to CAN bus errors?

In this tutorial you'll learn about the basics of CAN error handling, the 5 CAN bus error types, the CAN error frame and
CAN node error states.

To get practical, we'll also generate & record CAN errors in 6 experiments.

What are CAN bus errors?
As explained in our simple intro to CAN bus, the Controller
Area Network is today the de facto standard across
automotives and industrial automation systems.

A core benefit is the robustness of CAN, making it ideal for
safety critical applications. Here, it is worth noting:

Error handling is vital to the robustness of CAN.

CAN bus errors can occur for several reasons - faulty cables,
noise, incorrect termination, malfunctioning CAN nodes etc.
Identifying, classifying and resolving such CAN errors is key
to ensuring the continued performance of the overall CAN
system.

In particular, error handling identifies and rejects erroneous messages, enabling a sender to re-transmit the message.
Further, the process helps identify and disconnect CAN nodes that consistently transmit erroneous messages.

How does CAN error handling work?

Error handling is a built-in part of the CAN standard and every CAN controller. In other words, every CAN node handles
fault identification and confinement identically. Below we've made a simple illustrative example:

Example step-by-step

1. CAN node 1 transmits a message onto the CAN bus - and reads every bit it sends
2. In doing so, it discovers that one bit that was sent dominant was read recessive
3. This is a 'Bit Error' and node 1 raises an Active Error Flag to inform other nodes
4. In practice, this means that node 1 sends a sequence of 6 dominant bits onto the bus
5. In turn, the 6 dominant bits are seen as a 'Bit Stuffing Error' by other nodes
6. In response, nodes 2 and 3 simultaneously raise an Active Error Flag
7. This sequence of raised error flags comprise part of a 'CAN error frame'
8. CAN node 1, the transmitter, increases its 'Transmit Error Counter' (TEC) by 8
9. CAN nodes 2 and 3 increase their 'Receive Error Counter' (REC) by 1
10. CAN node 1 automatically re-transmits the message - and now succeeds
11. As a result, node 1 reduces its TEC by 1 and nodes 2 and 3 reduce their REC by 1

The example references a number of concepts that we will detail shortly: Error frames, error types, counters and states.

The CAN bus error frame

In the illustrative example, the CAN nodes 'raise Active Error Flags', thus creating an 'error frame' in response to detecting
a CAN error.

To understand how this works, let us first look at a "normal" CAN frame (without errors):

CAN bus bit stuffing

Notice that we highlighted 'bit stuffing' across the CAN
frame.

Bit stuffing is a subtle, but vital part of the CAN standard.
Basically it states that whenever a CAN node sends five
bits of the same logic level (dominant or recessive), it
must send one bit of the opposite level. This extra bit is
automatically removed by the receiving CAN nodes. This
process helps ensure continuous synchronisation of the
network.

As per the previous example, when CAN node 1 detects
an error during the transmission of a CAN message, it
immediately transmits a sequence of 6 bits of the same
logic level - also referred to as raising an Active Error Flag.

Oscilloscope example

If we measure the transmission of a CAN frame via an oscilloscope and digitize the result, we can also see the stuff bits
in practice (see the red timestamp marks):

Active Error Flags

As we just learned, such a sequence is a violation of the bit stuffing rule - aka a 'Bit Stuffing Error'. Further, this error is
visible to all CAN nodes on the network (in contrast to the 'Bit Error' that resulted in this error flag being raised). Thus, the
raising of error flags can be seen as a way of "globalizing" the discovery of an error, ensuring that every CAN node is
informed. Note that the other CAN nodes will see the Active Error Flag as a Bit Stuffing Error. In response they also raise
an Active Error Flag.

As we'll explain shortly, it is important to distinguish between the error flags. In particular, the first error flag (from the
'discovering' node) is often referred to as a 'primary' Active Error Flag, while the error flags of subsequent 'reacting' nodes
are referred to as the 'secondary' Active Error Flag(s).

3 CAN error frame examples

Let's look at three example scenarios:

Example 1: 6 bits of error flags

Here, all CAN nodes simultaneously discover that an error
exists in a CAN message and raise their error flags at the
same time.

The result is that the error flags all overlap and the total
sequence of dominant bits lasts for 6 bits in total. All CAN
nodes will in this case consider themselves the
'discovering' CAN nodes.

This type of simultaneous discovery is less common in
practice. However, it could e.g. happen as a result of Form
Errors (such as a CRC delimiter being dominant instead of
recessive), or if a CAN transmitter experiences a bit error
during the writing of a CRC field.

Example 2: 12 bits of error flags

Here, CAN node 1 transmits a dominant bit, but reads it
as recessive - meaning that it discovers a Bit Error. It
immediately transmits a sequence of 6 dominant bits.

The other nodes only discover the Bit Stuffing Error after
the full 6 bits have been read, after which they
simultaneously raise their error flags, resulting in a
subsequent sequence of 6 dominant bits - i.e. 12 in total.

Example 3: 9 bits of error flags

Here, CAN node 1 has already transmitted a sequence of
3 dominant bits when it discovers a Bit Error and begins
sending 6 dominant bits.

Once halfway through the primary Active Error Flag,
nodes 2 and 3 recognize the Bit Stuffing Error (due to the
3 initial dominant bits being followed by another 3
dominant bits) and they begin raising their error flags. The
result is that the sequence of dominant bits from error
flags becomes 9 bit long.

The above logic of raising error flags is reflected in what we call an 'active' CAN error frame.

Note in particular how the secondary error flags raised by
various nodes overlap each other - and how the primary
and secondary flags may overlap as well. The result is that
the dominant bit sequence from raised error flags may be
6 to 12 bits long.

This sequence is always terminated by a sequence of 8
recessive bits, marking the end of the error frame.

In practice, the active error frame may "begin" at different
places in the erroneous CAN frame, depending on when
the error is discovered. The result, however, will be the
same: All nodes discard the erroneous CAN frame and the
transmitting node can attempt to re-transmit the failed
message.

Passive Error Flags

If a CAN node has moved from its default 'active' state to a 'passive' state (more on this shortly), it will only be able to raise
so-called 'Passive Error Flags'. A Passive Error Flag is a sequence of 6 recessive bits as seen below.

In this case it's relevant to distinguish between a Passive Error Flag raised by a transmitting node and a receiving node.

Example 4: Transmitter is Error Passive

As shown in the illustration (Example 4), if a transmitter
(such as CAN node 1 in our example) raises a Passive
Error Flag (e.g. in response to a Bit Error), this will
correspond to a consecutive sequence of 6 recessive bits.

This is in turn detected as a Bit Stuffing Error by all CAN
nodes. Assuming the other CAN nodes are still in their
Error Active state, they will raise Active Error Flags of 6
dominant bits. In other words, a passive transmitter can
still "communicate" that a CAN frame is erroneous.

Example 5: Receiver is Error Passive

In contrast, if a receiver raises a Passive Error Flag this is
in practice "invisible" to all other CAN nodes on the bus
(as any dominant bits win over the sequence of recessive
bits) - see also Example 5.

Effectively, this means that an Error Passive receiver no
longer has the ability to destroy frames transmitted by
other CAN nodes.

CAN error types
Next, let us look at what errors may cause CAN nodes to raise error flags.

The CAN bus protocol specifies 5 CAN error types:

1. Bit Error [Transmitter]
2. Bit Stuffing Error [Receiver]
3. Form Error [Receiver]
4. ACK Error (Acknowledgement) [Transmitter]
5. CRC Error (Cyclic Redundancy Check) [Receiver]

We've already looked at Bit Errors and Bit Stuffing Errors
briefly, both of which are evaluated at the bit level. The
remaining three CAN error types are evaluated at the
message level.

Below we detail each error type:

#1 Bit Error

Every CAN node on the CAN bus will monitor the signal level at any given time -
which means that a transmitting CAN node also "reads back" every bit it transmits.
If the transmitter reads a different data bit level vs. what it transmitted, the
transmitter detects this as a Bit Error.

If a bit mismatch occurs during the arbitration process (i.e. when sending the CAN
ID), it is not interpreted as a Bit Error. Similarly, a mismatch in the
acknowledgement slot (ACK field) does not cause a Bit Error as the ACK field
specifically requires a recessive bit from the transmitter to be overwritten by a
dominant bit from a receiver.

#2 Bit Stuffing Error

As explained, bit stuffing is part of the CAN standard. It dictates that after every 5
consecutive bits of the same logical level, the 6th bit must be a complement. This is
required to ensure the on-going synchronization of the network by providing rising
edges. Further, it ensures that a stream of bits are not mis-interpreted as an error
frame or as the interframe space (7 bit recessive sequence) that marks the end of a
message. All CAN nodes automatically remove the extra bits.

If a sequence of 6 bits of the same logical level is observed on the bus within a CAN
message (between the SOF and CRC field), the receiver detects this as a Bit Stuffing
Error aka Stuff Error.

#3 Form Error

This message-level check utilises the fact that certain fields/bits in the CAN message
must always be of a certain logical level. Specifically the 1-bit SOF must be
dominant, while the entire 8-bit EOF field must be recessive. Further, the ACK and
CRC delimiters must be recessive. If a receiver finds that any of these are bits are of
an invalid logical level, the receiver detects this as a Form Error.

#4 ACK Error (Acknowledgement)

When a transmitter sends a CAN message, it will contain the ACK field
(Acknowledgement), in which the transmitter will transmit a recessive bit. All
listening CAN nodes are expected to send a dominant bit in this field to verify the
reception of the message (regardless of whether the nodes are interested in the
message or not). If the transmitter does not read a dominant bit in the ACK slot, the
transmitter detects this as an ACK Error.

#5 CRC Error (Cyclic Redundancy Check)

Every CAN message contains a Cyclic Redundancy Checksum field of 15 bits. Here,
the transmitter has calculated the CRC value and added it to the message. Every
receiving node will also calculate the CRC on their own. If the receiver's CRC
calculation does not match the transmitter's CRC, the receiver detects this as a CRC
Error.

CAN node states & error
counters

As evident, CAN error handling helps destroy erroneous
messages - and enables CAN nodes to retry the
transmission of erroneous messages.

This ensures that short-lived local disturbances (e.g. from
noise) will not result in invalid/lost data. Instead, the
transmitter attempts to re-send the message. If it wins
arbitration (and there are no errors), the message is
successfully sent.

However, what if errors are due to a systematic
malfunction in a transmitting node? This could trigger an
endless loop of sending/destroying the same message -
jamming the CAN bus.

This is where CAN node states and error counters
come in.

In short, the purpose of CAN error tracking is to confine
errors by gracefully reducing the privileges of problematic
CAN nodes.

Specifically, let's look at the three possible states:

1. Error Active: This is the default state of every
CAN node, in which it is able to transmit data and
raise 'Active Error Flags' when detecting errors

2. Error Passive: In this state, the CAN node is still
able to transmit data, but it now raises 'Passive
Error Flags' when detecting errors. Further, the
CAN node now has to wait for an extra 8 bits (aka
Suspend Transmission Time) in addition to the 3
bit intermission time before it can resume data
transmission (to allow other CAN nodes to take
control of the bus)

3. Bus Off: In this state, the CAN node disconnects
itself from the CAN bus and can no longer
transmit data or raise error flags

Every CAN controller keeps track of its own state and acts accordingly. CAN nodes shift state depending on the value of
their error counters. Specifically, every CAN node keeps track on a Transmit Error Counter (TEC) and Receive Error
Counter (REC):

● A CAN node enters the Error Passive state if the REC or TEC exceed 127
● A CAN node enters the Bus Off state if the TEC exceeds 255

How do the error counters change?

Before we get into the logic of how error counters are
increased/reduced, let us revisit the CAN error frame as
well as the primary/secondary error flags.

As evident from the CAN error frame illustration, a CAN
node that observes a dominant bit after its own sequence
of 6 dominant bits will know that it raised a primary error
flag. In this case, we can call this CAN node the
'discoverer' of the error.

At first, it might sound positive to have a CAN node that
repeatedly discovers errors and reacts promptly by raising
an error flag before other nodes. However, in practice, the
discoverer is typically also the culprit causing errors - and
hence it is punished more severely as per the overview.

Details on TEC/REC counters

There are some additions/exceptions to the above rules, see e.g. this overview.

Most are pretty straight-forward based on our previous illustrative example. For example, it seems clear that CAN node
1 would increase the TEC by 8 as it discovers the Bit Error and raises an error flag. The other nodes in this case increase
their REC by 1.

This has the intuitive consequence that the transmitting node will quickly reach the Error Passive and eventually Bus
Off states if it continuously produces faulty CAN messages - whereas the receiving nodes do not change state.

The case where a receiver raises the primary error flag may seem counter-intuitive. However, this could for example be
the case if a receiver CAN node is malfunctioning in a way that causes it to incorrectly detect errors in valid CAN
messages. In such a case, the receiver would raise the primary error flag, effectively causing an error. Alternatively, it
can happen in cases where all CAN nodes simultaneously raise error flags.

CAN/LIN data & error logger

The CANedge1 lets you easily record data from 2 x
CAN/LIN buses to an 8-32 GB SD card - incl. support for
logging CAN/LIN errors. Simply connect it to e.g. a car or
truck to start logging - and decode the data via free
software/APIs. Further, the CANedge2 adds WiFi, letting
you auto-transfer data to your own server - and update
devices over-the-air.

Examples: Generating & logging error frames

We have now covered the theoretical basics of CAN errors and CAN error handling. Next, let us look at generating and
logging errors in practice. For this we will use a couple of CANedge devices - and for some tests a PCAN-USB device.

https://www.csselectronics.com/products/can-logger-sd-canedge1
https://www.csselectronics.com/pages/can-bus-software-api-tools
https://www.csselectronics.com/pages/can-bus-software-api-tools
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2

Test #1: No CAN bus errors

As a benchmark, we start with a test involving no CAN bus errors.
Here, a CANedge2 'transmitter' sends data to another CANedge2
'receiver' - and both log CAN bus errors.

By loading the MF4 log file in the asammdf GUI we verify that no CAN
errors occurred during this test, which is to be expected.

Test #2: Removing the CAN bus terminal resistor

In this test, we remove the CAN termination in the middle of a log session.
This effectively corresponds to immediately setting the bit level to
dominant. As a result, the CANedge2 transmitter immediately starts
logging Bit Errors (which occur when it attempts to transmit a recessive
bit, but reads a dominant bit). The CANedge2 Receiver logs Bit Stuffing
Errors as it detects 6 consecutive dominant bits. These errors are recorded
until the termination is added again.

[see the online article for screenshots of the errors in asammdf]

How relevant is this in practice?

Lack of termination is rarely a practical issue if you're recording data from a vehicle, machine etc. However, it's a
common issue when working with 'test bench' setups. Here, the lack of termination may cause confusion as it can be
difficult to distinguish from an inactive CAN bus. If in doubt, enabling error frame logging on the CANedge can be useful
in troubleshooting.

Test #3: Setting an incorrect baud rate

In this test we configure the CANedge receiver node to have a baud
rate of 493.827K vs. the baud rate of the transmitter of 500K. This is
a fairly extreme difference and results in ACK Errors for the
transmitter and Bit Stuffing Errors for the receiver.

In more realistic scenarios, smaller differences in the baud rate
configuration of various nodes may cause intermittent error frames
and thus message loss.

[see the online article for screenshots of the errors in asammdf]

How relevant is this in practice?

This example is rather extreme. However, in practice we have sometimes seen CAN buses that use standard bit rates
(250K, 500K, …), but with specific bit timing settings that differ from the ones that are typically recommended (and
hence used by the CANedge). This will not lead to a complete shut-down of the communication, but rather periodic
frame loss of a few percentages. To resolve this, you can construct an 'advanced bit rate' in the CANedge configuration,
essentially setting up the bit-timing to better match the CAN bus you're logging from.

Test #4: Removing the acknowledging CAN node

In this test, we use three CANedge units configured as follows:

● CANedge1: Configured to acknowledge data
● CANedge2 A: Configured in 'silent mode' (no acknowledgement)
● CANedge2 B: Configured to transmit a CAN frame every 500 ms

In the default setup, data is transmitted by the CANedge2 B onto the CAN
bus and recorded with no errors. However, if we remove the CANedge1
from the bus there are no longer any CAN nodes to acknowledge the frames
sent by the transmitter.

As a result, the transmitter detects ACK Errors. In response, it increases its
Transmit Error Counter and raises Active Error Flags onto the CAN bus.
These are in turn recorded by CANedge2 A (which silently monitors the bus)
as Form Errors.

[see the online article for screenshots of the errors in asammdf]

The CANedge records Form Errors due to the fact that the transmitter raises
them upon identifying the lack of a dominant bit in the ACK slot. As soon as
a dominant bit is observed by the receiver in the subsequent EOF field
(which should be recessive), a Form Error is detected.

As evident, the transmitter broadcasts 16 Active Error Flags as its TEC is
increased from 0 to 16 x 8 = 128. The transmitter has now exceeded the
threshold of a TEC of 127 and enters Error Passive mode. As a result, the
transmitter still experiences ACK Errors, but now only raises Passive Error

Flags (not visible to the receiver). At this point, the transmitter keeps
attempting to transmit the same frame - and the receiver keeps recording
this retransmission sequence.

How relevant is this in practice?

This type of error is one we often encounter in our support tickets. Specifically, users may be trying to use our CAN
loggers to record data from a single CAN node (such as a sensor-to-CAN module like our CANmod). If they decide to
enable 'silent mode' on the CANedge in such an installation, no CAN nodes will acknowledge the single CAN node
broadcasting data - and the result will either be empty log files, or log files filled with retransmissions of the same CAN
frame (typically at very high frequency).

Test #5: CAN frame collisions (no retransmission)

When setting up a CAN bus, it is key to avoid overlapping CAN IDs. Failing to
do so can result in frame collisions as two CAN nodes may both believe
they've won the arbitration - and hence start transmitting their frames at the
same time.

To simulate this, we use the same setup as in test #4. In addition, we
connect a PCAN-USB device as a secondary transmitter.

The CANedge2 transmitter is now configured to output a single CAN frame
every 10 ms with CAN ID 1 and a payload of eight 0xFF bytes. Further, we
configure the CANedge2 to disable retransmission of frames that were
disrupted by errors. The PCAN-USB outputs an identical CAN frame every 2
ms with the 1st byte of the payload changed to 0xFE. The PCAN device has
retransmissions enabled.

This setup quickly creates a frame collision, resulting in the CANedge and
PCAN transmitters detecting a Bit Error. In response to this, both raise an
Active Error Flag, which is detected as a Bit Stuffing Error by the CANedge
receiver. The PCAN device immediately attempts a retransmission and
succeeds, while the CANedge waits with further transmission until the next
message is to be sent.

[see the online article for screenshots of the errors in asammdf]

How relevant is this in practice?

This type of error should of course never happen in e.g. a car, since the design and test processes will ensure that all
CAN nodes communicate via globally unique CAN identifiers. However, this problem can easily occur if you install a 3rd
party device (e.g. a sensor-to-CAN module) to inject data into an existing CAN bus. If you do not ensure the global
uniqueness of the CAN IDs of external CAN nodes, you may cause frame collisions and hence errors on the CAN bus.
This is particularly important if your external CAN node broadcasts data with high priority CAN IDs as you may then
affect safety critical CAN nodes.

Test #6: CAN frame collisions (incl. retransmission)

In this test, we use the same setup as before, but we now enable retransmissions on the CANedge2 transmitter.

In this case, the frame collision results in a sequence of subsequent frame collisions as both the CANedge2 and the
PCAN-USB device attempt to re-transmit their disrupted messages.

Due to the resulting Bit Errors, both raise a total of 16 Active Error Flags, which are detected as Bit Stuffing Errors by
the silent CANedge2 receiver. Both transmitters then enter Error Passive mode and stop raising Active Error Flags,
meaning none of them can destroy CAN frames on the bus. As a result, one of the transmitters will succeed in
transmitting a full message, thus ending the retransmission frenzy - and enabling both devices to resume transmission.
However, this only lasts for a few seconds before another collision occurs.

How relevant is this in practice?

The collision handling is a good example of how effective the CAN error handling is at 'shutting down' potentially
problematic sequences and enabling CAN nodes to resume communication. If a frame collision occurs, it is likely that
both CAN nodes will be set up to attempt retransmission, which would cause a jam if not for the error handling and
confinement.

LIN bus errors

Similar to CAN bus errors, the LIN protocol also specifies a set of four error types, which we outline briefly below. The
CANedge supports both CAN/LIN error frame logging.

#1 LIN Checksum Error

As for the CAN CRC Error, this error type implies that a LIN node has calculated a different checksum vs. the one
embedded in the LIN bus frame by the transmitter. If you're using the CANedge as a LIN Subscriber, this error may
indicate that you've configured the device 'frame table' with incorrect identifiers for some of the LIN frames on the bus.

This can in turn be used to 'reverse engineer' the correct lengths and IDs of proprietary LIN frames via a step-by-step
procedure. See the CANedge Docs for details.

#2 LIN Receive Error

These occur if a specific part of the LIN message does not match the expected value, or if there is a mismatch between
what is transmitted vs. read on the LIN bus.

#3 LIN Synchronization Error

This error indicates an invalid synchronization field in the start of the LIN frame. It can also indicate a large deviation
between the configured bit rate for a LIN node vs. the bit rate detected from the synchronization field.

#4 LIN Transmission Error

Transmission errors can occur for LIN identifiers registered as SUBSCRIBER messages. If there are no nodes responding
to a SUBSCRIBER message, a transmission error is logged.

Example use cases for CAN error frame logging

CAN bus diagnostics in OEM vehicles

An automotive OEM may have the need to record CAN
error frames in the field during late stage prototype
testing. By deploying a CANedge, the OEM engineering
team will both be able to troubleshoot issues based on
the actual CAN signals (speed, RPM, temperatures) - as
well as issues related with the lower layer CAN
communication in their prototype systems. This is
particularly vital if the issues of interest are intermittent
and e.g. only happen once or twice per month. In such
scenarios, CAN bus interfaces are not well suited - and it
becomes increasingly relevant to have a cost-effective
device to enable scalable deployments for faster
troubleshooting.

Remotely troubleshooting CAN errors in
machinery

An OEM or aftermarket user may need to capture rare
CAN error events in their machines. To do so, they deploy
a CANedge2 to record the CAN data and related error
frames - and automatically upload the data via WiFi to
their own cloud server. Here, errors are automatically
identified and an alert is sent to the engineering team to
immediately allow for diagnosing and resolving the issue.

FAQ

Does the CANedge support all CAN/LIN error types?

Yes, the CANedge is able to record all CAN/LIN error types. It does, however, not currently record its own error counter
status as this is deemed less relevant from a logging perspective.

Will a CANedge raise error flags?

The CANedge is only able to raise error flags onto the CAN bus if it is configured in its 'normal' mode, in which it is also
able to transmit messages. If in 'restricted' mode it can listen to CAN frames and acknowledge CAN frames - but not
raise Active Error Flags onto the bus. In 'monitoring' mode (aka 'silent mode') it can listen to the CAN bus traffic, but not
acknowledge messages nor raise Active Error Flags. The CANedge will always record internal CAN/LIN error frames.

What information can be recorded regarding a CAN/LIN error?

If a CAN frame is erroneous, resulting in an error frame, the CANedge generally only records the error type - without
any data related to the erroneous frame (beyond the timestamp). One exception to this rule is for acknowledgement
errors, where the CANedge will still record unacknowledged CAN frames (incl. from retransmission attempts).

Is error handling a cybersecurity risk?

Some researchers have pointed out the risk that 'bad actors' could utilize the CAN bus error handling functionality to
enforce remote 'bus off' events for safety-critical ECUs. This is a good example of why CAN bus data loggers &
interfaces like the CANedge2 with remote over-the-air data transfer and updates need to be highly secure (see also our
intro to CAN cybersecurity). For a nice overview of a remote bus off attack, see this intro by Adrian Colyer.

https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/pages/secure-can-bus-logging-telematics-intro
https://blog.acolyer.org/2016/11/11/error-handling-of-in-vehicle-networks-makes-them-vulnerable/

NMEA 2000 Explained - A Simple Intro
Need a simple, practical intro to NMEA 2000?

In this guide we introduce the N2K protocol (IEC 61162-3) used in maritime vessels such as boats, yachts, tugs and other
ships. In particular, we'll cover the NMEA 2000 standards, key concepts, links to other protocols (NMEA 0183, CAN/J1939),
topology and connectors. We also cover NMEA 2000 PGNs and Fast Packets.

To ensure this stays practical, we also explain how to record and decode NMEA 2000 data - with practical use cases and
examples. Learn more below!

What is NMEA 2000?
NMEA 2000 (IEC 61162-3) is a communication standard used in the
maritime industry for connecting e.g. engines, instruments and
sensors on boats. It is based on the Controller Area Network (CAN)
and allows data to be sent/received between devices over a single
network 'backbone' cable.

The higher layer functionality of NMEA 2000 (aka N2K) is based on
SAE J1939 and ISOBUS (ISO 11783), commonly used in heavy-duty
vehicles and agriculture/forestry machinery, respectively.

NMEA 2000 succeeds the older NMEA 0183 and is today used in
most modern maritime vessels like boats, ships, yachts and related
equipment/sensors.

https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/pages/isobus-introduction-tutorial-iso-11783

Multiple boat networks

Importantly, a maritime vessel may use multiple networks.

For example, a twin engine speed boat may comprise an NMEA 2000 network connecting both outboard engines to the
helm accessories (control head, keys, displays). This network will typically be constructed by the boat OEM. The engines
themselves may internally communicate via e.g. the J1939 protocol with a gateway/filter module feeding engine related
data to the NMEA 2000 network.

In addition, various sensors measuring e.g. GPS position, wind, water depth etc. may be added to same NMEA 2000
network. However, cases also exist where such sensors are retrofitted by the boat operator onto a separate NMEA
2000 network.

NMEA 2000 vs NMEA 0183
NMEA 0183 (IEC 61162-1) is the predecessor to NMEA
2000 (IEC 61162-3). The NMEA organization published the
NMEA 0183 protocol with the purpose of standardizing
the communication between different electronic
equipment in maritime vessels.

The protocol replaced NMEA 0180 and NMEA 0182. The
NMEA 0183 protocol remains in active use today,
although NMEA 2000 has become the industry standard.

Details on NMEA 0183

The NMEA 0183 protocol uses the electrical standard RS232/RS422 for communication instead of CAN bus. In this
setup, one 'talker' (e.g. a GPS module) can communicate with multiple 'listener' nodes (e.g. an autopilot and a
chartplotter). However, it is not possible to have multiple 'talkers' on the same network (in contrast to CAN). As a result,
a separate NMEA 0183 network is required for every 'talker' node - which quickly becomes complex when the networks
are interconnected.

Data is communicated in an ASCII format as standardized 'sentences' defined in the application layer. The data is
transmitted as printable ASCII characters in the range 0x20 to 0x7E and reflect 'physical values' (e.g. degrees), rather
than 'raw data' as in NMEA 2000. For a detailed overview of the message/sentence structure, see this table.

Key benefits of NMEA 2000 vs. NMEA 0183

Overall, NMEA 2000 is a far more modern and flexible communication protocol compared to NMEA 0183, and is therefore
today widely used in marine electronic systems. Below we outline the key advantages:

https://en.wikipedia.org/wiki/NMEA_0183#Message_structure

Simpler & lower cost network
NMEA 2000 allows all nodes to
communicate with each other

(multiple talkers) and the power
supply is directly integrated in the

backbone, reducing wiring costs and
simplifying the network vs. NMEA

0183. The standardized T-connectors
also simplify integration

Faster data transmission
NMEA 2000 enables a higher data
transmission rate than NMEA 0183

(250K vs. 4.8K), meaning it can
transmit more data in a given amount
of time. This is useful when real-time
data is required, such as in navigation

or engine monitoring applications

Better device compatibility
NMEA 2000 is designed to allow
different devices from different

manufacturers to be connected to the
same network and to exchange data
in a standardized way. This makes it
easier to mix and match devices on
the same network, and reduces the

risk of compatibility issues

Larger network size
NMEA 2000 networks can be larger
than NMEA 0183 networks, as they

are designed to support more devices
(up to 50 nodes) and transmit data
over longer distances. This can be
useful in larger vessels or systems
where a greater number of devices

need to be connected

More robust communication
NMEA 2000 uses the Controller Area
Network (CAN) bus, which is a digital
communication protocol that is less

susceptible to noise and interference
than the serial communication

protocol used by NMEA 0183. This
makes NMEA 2000 networks more

reliable and resilient

Backwards compatibility
NMEA 2000 enables integration of

NMEA 0183 devices via low cost
gateways, enabling the integration of

existing electronics into new
networks. The reverse is, however,

not true - i.e. NMEA 2000 nodes
cannot be added to NMEA 0183

networks

NMEA history and certification
The National Marine Electronics Association (NMEA) is a non-profit organization
founded in 1957. It represents manufacturers, distributors, and dealers in the
maritime industry and helps ensure device compatibility across
brands/manufacturers through the promotion of data communication
standardization, education and certification.

NMEA and AEF

To some extent, the role of NMEA can be compared to that of the Agricultural Industry Electronics Foundation (AEF) in
the agriculture/forestry industry. Both NMEA 2000 and ISOBUS share the need for strict protocol conformance
requirements in order to deliver on the promise of plug & play integration of products across manufacturers. Here, the
organisations play a key role in facilitating a standardised process for product certification - as well as in providing a
database for identifying conforming manufacturers/products.

https://www.nmea.org/

NMEA history

● 1957: National Marine Electronics Association founded
● 1983: NMEA 0183 v1.00 published by NMEA
● 1985: NMEA 0183 standardized as IEC 61162-1
● 1992: NMEA 0183 v2.00 released
● 1994: N2K development begun by Standards Committee
● 2000: NMEA 0183 v3.00 released
● 2001: NMEA 2000 v1.000 released
● 2008: NMEA 2000 standardized as IEC 61162-3
● 2008: NMEA 0183 v4.00 released
● ~2009: NMEA 2000 becomes the industry standard
● 2022: NMEA 2000 v3.000 released

NMEA 2000 conformance certification
To ensure interoperability of N2K nodes, NMEA facilitates a certification
process through which a product can become 'NMEA 2000 Certified' and
add a certification logo to the product. In practice, the certification is done
via a self-certification process using mandated test equipment (the NMEA
2000 Certification Tool, i.e. a CAN interface/software) and validation by
NMEA. Certification does not imply that a specific product must produce
certain data. Rather, it ensures that a product is compatible with other
NMEA 2000 certified products - enabling them to coexist on the same
network without causing interference.

NMEA certification classes and levels

The NMEA 2000 product certification can be granted as
both a Class 1 and Class 2, with a Level A and B in each.
Class 1 devices rely on a single NMEA 2000 interface for
communication, while Class 2 devices provide two
interfaces for the purpose of redundancy. For each class,
Levels A and B allow for distinguishing between
sophisticated devices (with full communication support
incl. e.g. implementation of ISO TP communication) and
more simplistic devices with a smaller scope of required
communication functionality.

NMEA 2000 approved vs. certified

Some third-party products may use alternative classifications from the 'NMEA 2000 Certified':

1. NMEA 2000 Approved: These products are able to implement NMEA 2000 and have passed the physical
hardware tests of the N2K certification program

2. NMEA 2000 Certified for use with [Approved Product Name]: These products may be used in combination with
a specific NMEA 2000 Approved product, together creating a fully compatible product

3. NMEA 2000 Certified for use with [Certified Gateway Product Name]: These products may be used in
combination with an NMEA 2000 Certified gateway product.

Finally, another classification is 'NMEA 2000 Approved Diagnostic Tool - Not for permanent connection to a NMEA 2000
backplane' - intended for tools that may e.g. disrupt safety-critical functionality in the NMEA 2000 network if used
incorrectly.

NMEA 2000 OSI model & standards
Below we briefly outline the link between each OSI model layer and the
NMEA 2000 standard (as well as referenced standards).

● Application: This layer is fully defined by the NMEA 2000 standard
and defines approved PGNs/signals incl. a provision for
manufacturer-specific proprietary messages. NMEA Appendix A
defines PGNs, while Appendix B provides a full list of the
standardized NMEA 2000 PGNs and signals

● Transport: In NMEA 2000, the transport layer is responsible for
establishing and maintaining connections between devices, as
well as fragmenting and reassembling messages as needed. This
can be done via the transport protocol used in ISOBUS/J1939 or
via NMEA Fast Packets (see also the Data Link layer)

● Network: This layer is to be further defined in the future in the
NMEA 2000 standard

● Data Link: This layer is responsible for transmitting data across
the communication channel and ensuring that the data is
delivered correctly. The NMEA 2000 standard uses the CAN
protocol at the data link layer, which includes error detection and
correction mechanisms to ensure reliable transmission. Note that
this layer references ISO 11783-3 (ISOBUS), SAE J1939-21 and
11898-1 (CAN) The NMEA 2000 standard defines additional
requirements/functionality, including the NMEA Fast Packet for
multiframe communication

● Physical: This layer is fully defined by the NMEA 2000 standard,
including signal voltages, cables and connectors. Note also the
inclusion of 11898-2 (CAN) to reflect the role of CAN bus as the
basis for NMEA 2000. This also specifies the standard baud rate of
250K for NMEA 2000 and details on cables and connectors

Further, the 'Network Management' is defined by ISO 11783-5 (ISOBUS). Note in particular that all NMEA 2000 compliant
devices must support dynamic address claiming

NMEA 2000 vs. J1939 vs. ISOBUS

As evident, NMEA 2000 is closely related to J1939 and
ISOBUS. Here we briefly clarify the link between these
protocols. First, let's do a very quick history recap:

In 1994, the Society of Automotive Engineers (SAE)
published the J1939 protocol for use in heavy-duty
vehicles. Next, ISOBUS was derived from J1939 for
agriculture/forestry machinery, formally standardized in
2007 (ISO 11783).

NMEA 2000 was released in 2001 and references parts of
SAE J1939 and ISO 11783 almost interchangeably. ISO
11783-3 is referenced for the data link layer, but in turn
references J1939-21. Similarly, NMEA 2000 references ISO
11783-5 for the network management, which is virtually
identical to J1939-81.In other words, NMEA 2000 is based
on ISO 11783 standards that are in turn based on J1939
standards.

Practical implications

In practical applications, NMEA 2000 is often seen in combination with J1939 or ISOBUS. For example, some boat
engines use J1939 internally and deploy a gateway/filter to parse certain information onto standardized NMEA 2000
PGNs. In some cases, NMEA 2000 and J1939 messages even co-exist on the same CAN bus. This is possible as none of
the NMEA 2000 PGNs overlap with J1939 PGNs. Similarly, NMEA 2000 messages are often broadcast onto an ISOBUS
network since many GPS modules are used in both maritime and agricultural use cases. See our ISOBUS intro for
details.

NMEA 2000 connectors & network topology
Below we describe the most common connectors encountered in maritime vessels:

#1 T connector (M12 5-pin)

The T-connector (aka T-piece) is used in constructing the
NMEA 2000 CAN bus 'backbone' in a linear fashion and for
connecting equipment. It is a three-way connector
consisting of two female connectors and one male
connector. The connectors are standardised DeviceNet
5-pin A-coded M12 connectors. The physical connector
and pinout differ between mini type (for backbones) and
micro type (for small backbones and for drop cables). The
micro M12 connector is also used in industrial
applications like CANopen and enable easy connection of
CAN based equipment - e.g. CAN bus data loggers.

m12 adapter cable

https://www.csselectronics.com/pages/isobus-introduction-tutorial-iso-11783
https://www.csselectronics.com/products/m12-db9-cable-5-pin

#2 Engine connector (J1939 9-pin)

Many maritime engines (e.g. from Cummins) deploy the
J1939 protocol for their internal communication. Some of
this information may be broadcast onto the NMEA 2000
network directly or through a gateway that converts the
PGN information to the corresponding NMEA 2000
encoding. Many engines come with separate diagnostic
connectors that allow direct access to the raw J1939 data -
and the most common connector for these would be the
J1939 deutsch 9-pin connector.

j1939 adapter cable

#3 Engine connector (CAT 9-pin)

Some maritime engines (e.g. from Caterpillar) use a
deutsch 9-pin CAT adapter. This looks almost identical to
the J1939 9-pin connector, but uses a different pinout.

cat adapter cable

#4 Engine connector (Deutsch DT06-6P)

In some maritime engines (e.g. from Volvo Penta),
alternative diagnostic connectors are used such as the
DT06-6P (male 6-pin) and DT06-6S (female 6-pin). You'll
often be able to convert from these connectors to other
popular connectors (like OBD2) via off-the-shelf adapters.

NMEA 2000 physical layer requirements

The NMEA 2000 standard also specifies requirements in terms of the physical layer as shown below.

https://www.csselectronics.com/products/j1939-db9-adapter-cable-deutsch
https://www.csselectronics.com/products/caterpillar-db9-9-pin-adapter-cable

Details on the NMEA 2000 topology

● The standard bit rate is 250 kb/s
● The CAN bus should be constructed as a linear 'backbone'
● The distance between two T-connectors must not exceed 100m
● The maximum length of the network is 200m
● The network supports up to 50 connected devices
● The max 'drop cable' length (between a T-connector and device) is 6m
● The max cumulative drop cable length is 78m
● Cables must adhere to DeviceNet (ODVA) standards
● The backbone must include a grounded power supply in the 9-16 V DC range (e.g. from the vessel 12 V DC

power supply or from an isolated 15 V DC supply)
● Three cable types: Mini/thick (for backbones requiring 4-8 amps per leg), mid (for backbones) and micro/thin

(for drop cables and small backbones)

NMEA 2000 Fast Packet
A key part of the NMEA 2000 standard is the 'Fast Packet'.

As per SAE J1939-21 and ISO 11783-3, the NMEA 2000 standard supports multi-packet communication of up to 1785 bytes
via the ISO 15765-2 (ISO TP) standard.

However, NMEA 2000 often requires frame payloads that exceed 8 bytes, but far less than 1785 bytes. Thus, the Fast
Packet was introduced as a more efficient transport protocol for medium-size payloads up to 223 bytes without any
transfer protocol delays. See the table overview for a comparison.

Frame identification
In the NMEA 2000 Fast Packet methodology, every frame retains the original PGN identifier. This means that the
multi-frame message can be uniquely identified at the ID level, in contrast to the ISO TP implementation in J1939,
ISOBUS and UDS, in which message identification requires extraction of information from the 1st CAN frame payload
data.

Fast Packet trace example

Below we show an NMEA 2000 Fast Packet example. As evident, all the transmitted frames contain a 'sequence counter'
in the 1st nibble and a 'frame counter' in the 2nd nibble of the 1st byte. Further, the first frame transmitted contains the
total payload length in the 2nd byte. To enable decoding, the frame needs to be reassembled as shown.

https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services

The CANedge Python API enables automatic reassembly
of Fast Packets into single with the full data payload
(stripped of the sequence counters and payload length).
This in turn enables easy DBC decoding of the data using
the NMEA 2000 DBC file. See our api-examples repository
for script examples.

N2K PGN & data fields
NMEA 2000 uses the concept of Parameter Group
Numbers (PGN) from the J1939 protocol. This means that
messages are identified based on 18-bit PGNs, which can
be extracted from the full 29-bit CAN identifiers.

Signals aka parameters will be 'packaged' in the data
payload of each message. Note that in contrast to J1939,
signals are not referred to as Suspect Parameter Numbers
(SPN), but instead as Data Fields (DF) or simply
parameters.

We do not cover the PGN structure here as it is already
covered in our SAE J1939 intro. However, we will provide a
few practical comments on NMEA 2000 PGNs and
parameters.

https://www.csselectronics.com/pages/python-can-bus-api
https://www.csselectronics.com/products/nmea-2000-dbc-file-pgn-database
https://github.com/CSS-Electronics/api-examples/tree/master/examples
https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial

NMEA 2000 PGN database

While NMEA 2000 was originally based on J1939, the standard J1939 PGNs
(from J1939-71) do not sufficiently cover the maritime requirements of the
NMEA standard.

To solve this, the NMEA 2000 application layer defines a number of PGNs
unique to NMEA 2000, which are described in the NMEA 2000 standard,
Appendix B. The appendix lists a number of PGNs and the data fields
contained within each of them. Each data field is described through a
'Data Dictionary'. This can be compared to how J1939-71 describes each
PGN and their underlying SPNs.

As evident from the PGN extract, the Appendix B PDF
contains information for decoding parameters like Wind
Speed. However, extracting this manually would be
time-consuming as the PDF contains 170+ PGNs and
1500+ parameters. Instead, we recommend using the
NMEA 2000 DBC file, which includes the PGN and
parameter information in a structured way, ready for use
in decoding raw NMEA 2000 data.

Regarding proprietary NMEA 2000 PGNs

The NMEA 2000 standard allows manufacturers to create their own proprietary PGNs, though with three conditions:

1. The proprietary PGN contains device specific information (e.g. a unique calibration)
2. The data is being used for test purposes
3. A suitable PGN is not available in the current NMEA 2000 PGN database

In general, manufacturers are encouraged to leverage the standardized PGNs (or migrate to these when they become
available). Further, if proprietary PGNs are used in a device, NMEA encourages manufacturers to publish the decoding
information.

Examples of NMEA 2000 signals in Appendix B

The NMEA 2000 appendix B contains 1500+ parameters aka Data Fields, encoded in NMEA 2000 specific PGNs. Below
are some examples of the maritime-oriented signals included:

● Alerts
● GNSS position
● Vessel speed
● Heading
● Rudder angle

https://www.csselectronics.com/products/nmea-2000-dbc-file-pgn-database

● Rate of turn
● Yaw, pitch, roll
● Engine speed
● Temperatures
● Fuel pressure
● Fuel rate
● Engine load
● Transmission
● Battery status
● Water depth
● Wind speed
● Air temperature
● ... and more

NMEA vs J1939 PGNs [+DBC files]

In maritime vessels, J1939 is often used 'within the
engines' (e.g. outboard engines) to communicate various
engine-related sensor data like engine speed,
temperatures, etc.

In such cases, a 'gateway' will typically convert a subset of
the J1939 PGN information into NMEA 2000 PGNs, thus
allowing e.g. displays to visualize the engine information.

For example, the J1939 PGN 0xF004 (61444) contains
Engine Speed - while it is encoded in the N2K PGN
0x1F200 (127488).

Original J1939 PGN transmission

As such, if you're recording data only from the NMEA 2000 network, you'll typically get the 'pure' NMEA 2000 PGN
information plus the 'filtered' J1939 PGN information (encoded as NMEA 2000 PGNs). In some cases, however, the
'original' J1939 PGNs will be directly output onto the NMEA 2000 network. This is possible because the protocols are
'harmonized', i.e. they use the same bit rate of 250K and none of the CAN IDs overlap.

In short, to maximize the vessel data you can decode, you should consider the following DBC files:

NMEA 2000 data (vessel, sensors)

If you connect to the NMEA 2000 network (e.g. via an M12
connector), you will generally record the broadcast NMEA 2000
data. To decode this, you can use the NMEA 2000 DBC, which
will allow you to extract information on the standardized PGNs
from the network. This may include 'filtered' engine information
as well.

learn more

https://www.csselectronics.com/products/nmea-2000-dbc-file-pgn-database

J1939 data (engines)

In some cases, the NMEA 2000 network may also contain the
original J1939 PGNs from the engine. Alternatively, you may be
able to access the original J1939 information by connecting
directly to the engine via a separate diagnostic connector
(typically a deutsch 9-pin J1939 connector). In either case, you
can use the J1939 DBC file to decode the standardized J1939
PGNs.

learn more

OEM data (proprietary)

There will almost always be some NMEA 2000 PGNs that are
proprietary. These are in principle only known to the OEM, but
since the NMEA organization encourages OEMs to publish their
encoding rules, it is likely that you will find the relevant
information in technical manuals or on-request. If so, you can
add them to your existing DBC file by modifying it via a DBC
editor (see our DBC intro for details).

Example: Decoding data from a boat

To showcase the breakdown of PGNs you'll often see in
maritime CAN data, consider a log file from a speed boat.
In this case, a CANedge1 has been used to record data
from the NMEA 2000 backbone, which also includes (at
least some of) the original J1939 data from the outboard
engine. The log file contains 161 unique CAN IDs,
corresponding to 72 unique PGNs.

As evident, the majority of the PGNs are decoded by the
NMEA 2000 DBC (as Single Frames or Fast Packets).
Further, the J1939 DBC is able to decode some of the
J1939 PGNs, while the rest are OEM specific. The
proprietary PGNs may originate from the J1939 engine
network or some of the NMEA 2000 network equipment.

Note regarding J1939 PGNs

Note here that the connection of the CANedge1 was made on the NMEA 2000 network - not directly onto the J1939
network (i.e. the engine's diagnostic connector). As a result, it is not known in this case whether more J1939 PGNs
would be available via a direct connection to the engine. Further, in most NMEA 2000 networks, the engine J1939 PGNs
are not directly broadcast onto the NMEA 2000 network, hence you'd normally need to record these separately. This is
often done with the CANedge, connecting the 1st port to the NMEA 2000 network and the 2nd port to the J1939 engine
diagnostic connector.

Logging NMEA 2000 maritime data
To log maritime CAN bus data from an NMEA 2000 network or J1939 engine, we recommend to check out our maritime
telematics intro. Below we will briefly recap the most relevant steps to consider:

https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/products/can-logger-sd-canedge1
https://www.csselectronics.com/pages/marine-telematics-boat-data
https://www.csselectronics.com/pages/marine-telematics-boat-data

#1 How to choose a CAN logger

If you need to log N2K/J1939 data to an SD card we
recommend the CANedge1. The device can be left in the
vessel to record data for weeks or months. To collect the
data, simply extract the SD. Alternatively, the CANedge2
lets you auto-upload data to your own server via WiFi. The
device logs data to the SD card and uploads it when the
vessel is near-shore with connectivity.

#2 How to connect to the N2K network

Next, you'll need to identify how to connect to the CAN
bus. The simplest way to connect to the NMEA 2000
network is to use a DB9-M12 adapter to connect via a
T-connector. This gives you access to all the raw NMEA
2000 data from that network. Optionally, you can use the
2nd CAN channel of the CANedge to connect to another
NMEA 2000 network (if one exists) or directly to the J1939
engine network. In the latter case, you can use one of the
engine diagnostic connectors listed previously.

#3 How to process the CAN data

To process the raw NMEA 2000 and/or J1939 vessel
data, you need a CAN software tool. In this, you'll
load the log files and related DBC files to convert the
raw data to physical values.

The CANedge software tools enable different forms
of analysis. For example, you can use the MF4
converters to transform the raw log files to popular
file formats (e.g. ASC, TRC, CSV), for use in tools like
Vector CANalyzer, Warwick X-Analyser 3 or PEAK
PCAN-Explorer. Or, you can use the asammdf GUI to
DBC decode the data and create visual plots incl.
GPS maps of your vessel routes. Further, you can
deploy automated data processing via the Python
API if you need to perform statistical analysis,
automated reporting or database integration. The
API can also be used to integrate the data with
Grafana dashboards.

https://www.csselectronics.com/products/can-logger-sd-canedge1
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/products/m12-db9-cable-5-pin
https://www.csselectronics.com/pages/mdf4-converters-mf4-asc-csv
https://www.csselectronics.com/pages/mdf4-converters-mf4-asc-csv
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://www.csselectronics.com/pages/python-can-bus-api
https://www.csselectronics.com/pages/python-can-bus-api
https://www.csselectronics.com/pages/telematics-dashboard-open-source

ISOBUS (ISO 11783) Explained - A Simple Intro
Need a simple, practical intro to ISOBUS (ISO 11783)?

In this guide we introduce the ISOBUS protocol used in agricultural vehicles (like tractors) and implements (like sprayers,
seeders). In particular, we'll cover the ISO 11783 standards, history, the link to J1939 and connectors.

To ensure this stays practical, we also explain how to record and decode ISOBUS data - with practical use cases and
dashboard playground examples.

Learn more below!

What is ISOBUS?
ISOBUS (ISO 11783) is a standardised communication
protocol used in agriculture and forestry machinery.
The main purpose is to enable plug & play
integration between vehicles (e.g. tractors) and
implements (e.g. sprayers) across manufacturers.

The protocol is based on the Controller Area Network
(CAN bus). Specifically, it has been derived from the
SAE J1939 protocol used in most heavy-duty vehicles
(including most tractors).

Today, ISOBUS is implemented in most modern
tractors and implements (like balers, sprayers,
fertilizers, seed drills) and enables standardised
communication between them.

For example, a tractor may use J1939 internally. The Tractor ECU (TECU) then serves as a gateway to the tractor's ISOBUS
network. Similarly, a sprayer may use e.g. J1939/CANopen internally, while an ISOBUS gateway facilitates the
communication with the tractor. Assuming ISOBUS is properly implemented in both tractor and implement, the
integration is seamless.

https://www.csselectronics.com/pages/isobus-introduction-tutorial-iso-11783#dashboard-example
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/pages/canopen-tutorial-simple-intro

With certified ISOBUS solutions, end users avoid cluttering cabins with implement-specific terminals - and instead control
any implement from a single universal terminal.

ISOBUS history and AEF
● 1991: ISO set up the initial working group (SC19 aka Working Group 1)
● 2001: ISOBUS started getting introduced in tractors and implements
● 2003-2005: ISOBUS made increasingly interoperable, in part via 'plugfests'
● 2008: The Agricultural Industry Electronics Foundation (AEF) was established
● 2022: AEF demonstrates High-Speed ISOBUS (HSI) based on Ethernet

AEF and ISOBUS certification

When ISOBUS solutions initially started rolling out in the early
nineties, most were early-stage solutions. From 2001, ISOBUS
experienced an adoption 'breakthrough' with tens of thousands
of new ISOBUS tractors/implements sold globally.

However, in practice, the standard was complex and interpreted
differently by manufacturers - causing incompatibility issues in
the field (and a general loss of confidence in the ISOBUS
promise). In response, AEF was established in 2008.

AEF members

AEF originally comprised seven agriculture equipment manufacturers (John Deere, CNH, Claas, AGCO, Kverneland
Group, Grimme, Pottinger) and two associations (Association of Equipment Manufacturers, AEM, and German
Engineering Federation, VDMA). Today, FederUnacoma serves as the 3rd core member association, while there are now
8 manufacturer core members including KUHN. In total, more than 200 companies/institutions are now members of
AEF.

https://www.aef-online.org/home.html

AEF has a set of core objectives
● Define guidelines for implementations of ISOBUS
● Coordinate improvements to ISOBUS incl. certification tests
● Coordinate collaboration in the agriculture industry
● Organize certification support, training and consulting

Further, AEF has developed a number of tools and products:
● AEF Conformance Test: Used by AEF accredited test labs to

certify ISOBUS components
● AEF Database: Used by dealers/users globally to assess

compatibility and conformance of ISOBUS components

Practical relevance

The conformance testing and related database are vital in ensuring a consistent, standardized implementation of
ISOBUS - allowing end users to lookup components across brands and manufacturers to ensure compatibility prior to
purchase. This ensures that the original promise of a 'plug & play' cross-brand experience with ISOBUS vehicles and
implements can be realized in practice.

ISOBUS OSI model & standards
Next, we will briefly consider the 7 layer OSI model for ISOBUS
including the link to the 14 parts of ISO 11783 standard.

Note how we also reference CAN bus (ISO 11898) for the physical
layer and data link layers, to reflect the role CAN plays as the basis for
ISOBUS.

While not shown in the illustration, SAE J1939 also plays a role as
reference for some of the layers/standard parts - for example,
J1939-71 provides the definition for most powertrain messages as
described in ISO 11783-8.

Below we briefly recap the 14 parts of the ISO 11783 standard.

ISO 11783-1: General standard for mobile data communication

This serves as an overview of the entire ISO 11783 standard collection, providing the basis for a standardized serial
communication network between forestry/agriculture tractors and implements. It describes the OSI model layers and
references the other standards.

ISO 11783-2: Physical layer

This standard specifies the physical layer of the network. Since ISOBUS is based on CAN, this standard is closely linked
to ISO 11898-2 describing the CAN bus physical layer. In addition, ISO 11783-2 describes ISOBUS specific connectors
like the ISOBUS Breakaway Connector (IBBC).

ISO 11783-3: Data link layer

This standard describes the ISOBUS message formats. Specifically, it dictates the use of extended CAN IDs and the use
of J1939-style Parameter Group Numbers (PGN). The standard also specifies a transport protocol for the
communication of multiframe ISOBUS messages, i.e. data that exceeds the 8 bytes of Classical CAN frames.

ISO 11783-4: Network layer

Here, the use of 'network interconnect units' are described for connecting two separate networks with differing
architectures. This gateway ensures both electrical and message isolation of each network.

ISO 11783-5: Network management

This defines the process for determining source addresses (SA) and resolving address conflicts. Source addresses can
be preset or dynamically claimed by each controller during power up.

ISO 11783-6: Virtual terminal

This standard describes the virtual terminal as an ECU that provides the tractor operator with an interface for
controlling the tractor and/or implement(s). The control should be exerted through the use of the standardized ISO
11783 messages. The VT is a core feature of ISOBUS.

ISO 11783-7: Implement messages application layer

This standard describes standardized application messages for the ISOBUS implement. This also serves as the basis for
most of the messages in our ISOBUS DBC file. To some extent, this can be compared to J1939-71, which serves as the
basis for most of the J1939 PGN and SPN decoding information. In the case of ISOBUS, messages described include e.g.
wheel/ground based speed and direction, key switch state, aux valves, lights and more.

ISO 11783-8: Powertrain messages

This describes powertrain messages used in the tractor network implementation. Effectively, it references the SAE
J1939-71 standard, stating that any overlapping messages should be implemented as per J1939-71.

ISO 11783-9: Tractor ECU

When an implement is connected to a tractor, it is critical to ensure consistent cross-communication. Here, the tractor
ECU should allow the implement to request information from ECUs on the tractor network in accordance with ISO
11783-7, as well as respond to implement commands. This also describes details on safe mode operation.

ISO 11783-10: Task controller and management information system data interchange

A 'farm management computer' may be available on the implement network. This enables the operator (typically a
farmer) to define tasks/actions for the implement to perform. The 'task controller' receives these tasks via an interface
from the computer. The tasks are scheduled by the controller, which ensures execution in the implement through

control functions. The controller also receives status information from the implement ECUs, which is parsed back to the
farm management computer. The standard defines the operation of the task controller, including the standardized
messages used for the control functions.

ISO 11783-11: Mobile data element dictionary

This is closely linked to 11783-10, providing a data dictionary to define the data elements used in the task controller
messages.

ISO 11783-12: Diagnostics services

This specifies messages used for diagnostics to identify faults and issues on the network. It can be compared to
J1939-73

ISO 11783-13: File server

This defines an ECU that provides data storage on the network (e.g. for multimedia), as well as a set of commands for
use by read/write data to the file server.

ISO 11783-14: Sequence control

This more recent standard (first issued in 2013) details how to perform sequence control within the ISO 11783 network.
Here, an operator can record sequences of control functions for later on-demand replay.

ISOBUS Functionalities
AEF refers to a number of ISO 11783 based 'products' as ISOBUS Functionalities. Effectively, these can be sold to end
users as a separate modules on the ISOBUS. In this section we briefly detail each of the AEF ISOBUS Functionalities:

#1 Virtual Terminal (VT) / Universal
Terminal (UT)

This refers to the Virtual Terminal specified in ISO
11783-6. The VT is sometimes referred to as an
Universal Terminal (UT) because of the capability it
provides: To allow the end user to operate different
implements (even across brands/manufacturers) via
a single terminal. We'll refer to it as the VT
throughout.

The VT is a core part of what makes ISOBUS visually
attractive: Instead of a messy tractor cabin
containing a multitude of implement-specific
displays, everything can now be handled through a
single display - across all ISOBUS compatible
implements.

In practice, the VT is initialized through a sequence of
CAN messages being sent between the VT and the
implement. Here, the VT informs the implement of

its specifications, allowing the implement to send its
user interface to the VT for graphical visualization.
Once initialized, the operator can perform various
implement control tasks through the VT.

#2 Tractor ECU (TECU)

The Tractor ECU (TECU) serves as a gateway between
the tractor CAN bus (typically J1939) and the ISOBUS.
The TECU provides selective info to the implement
like speed, RPM etc. from the tractor network via the
ISOBUS.

In more recent versions of Tractor ECUs, the
implement can take over full control of the tractor -
incl. steering, speed, braking, transmission etc. This
enables increasingly autonomous solutions where
tractor and implement operate seamlessly as a single
system.

Note also that the implement often has a similar
ECU, sometimes referred to as the Implement ECU
(I-ECU). This serves as a gateway between the
implement's internal CAN bus and the ISOBUS.

#3 Task Controller (TC)

The Task Controller is a piece of software that
records and provides information on operations and
assists in planning. It takes inputs from the operator
via an interface and serves to schedule tasks for the
implement, executing them through control
functions. In particular, it allows for automated and
thus more fine-grained control over the implement -
key in e.g. precision farming.

The Task Controller consists of three sub protocols:
1. Basic (TC-BAS): This is used for tracking data

totals (e.g. how much product has been
applied), with info provided by the
implement. This makes it easy to e.g. extract
documentat ion of the work done via
the operator interface

2. Section (TC-SEC): This enables automated
switching of sections in e.g. a sprayer based
on for example GPS position, allowing for
more precise use of implement functionality

3. Geo (TC-GEO): This is used for GPS-based
task automation, such as executing
geo-based seeding control. For example, this
is useful if certain areas in a field need
customized handling

#4 Auxiliary Control (AUX)

This ISOBUS Functionality often reflects a joystick or
similar control element, which enables more
fine-grained control over implement functionality.
Note that both a new/old version exists which are
not cross-compatible (AUX-N/AUX-O).

#5 Tractor Implement Management
(TIM)

As mentioned in the TECU section, there is
increasingly a demand for bi-directional control
between tractor and implement, meaning in
particular that the implement should eventually be
able to control the tractor in some use cases. This
would improve productivity and reduce operator
fatigue.

#6 Logging of device values (LOG)

This is focused on logging data from the
tractor/implement, independently of the task being
executed. To some extent, it can be compared to
retrofitting a CAN data logger to record all messages
being communicated on the CAN buses. However, in
the case of LOG, the aim is to allow for the data to be
exported in the ISO XML format (similar to what is
supported for Task Controller data).

#7 ISOBUS Shortcut Button (ISB)

This enables deactivation of selective implement
functions. This can be relevant in use cases where
multiple implements are being controlled from a
single tractor Virtual Terminal. Here, one implement
might be in the foreground, while the user needs to
quickly deactivate functionality in another
implement.

ISOBUS vs SAE J1939
A common question is how ISO 11783 (ISOBUS) relates to the SAE J1939 protocol.

In short, ISOBUS was originally derived from J1939 and a core goal of ISO 11783 is to remain compatible with J1939
through close alignment with SAE. In a sense, one can say that ISOBUS is today harmonized with J1939. This is useful as
many tractor networks will be based on SAE J1939, meaning that Tractor ECUs (TECU) often need to serve as gateways
between ISOBUS and J1939.

Further, various J1939 standards serve as direct references for the ISOBUS standards. For example, J1939-71 defines
powertrain messages and serves as a reference for ISO 11783-8. Both ISOBUS and J1939 also rely on CAN bus (CAN 2.0B)
as the lower layer for communication and both leverage the concept of 18 bit PGNs to identify messages.

However, J1939 is mainly used in 'closed systems' and therefore ISOBUS has been extended beyond J1939 to serve the
need for plug & play implements. It is therefore important to note that ISOBUS is not equal to J1939. We outline a number
of key differences in the table. For details see below:

ISO 11783 vs. J1939 - details

In particular, note that the ISOBUS application layer includes a number of additional components, such as the Virtual
Terminal and Task Controller.

ISOBUS also enables alternative transport protocol methods like Fast Packets e.g. for GNSS data (also known from
NMEA 2000) and Extended Transport Protocol (e.g. for sending data to the VT or File Server). ISOBUS also introduces a
number of Data Dictionary Identifiers, which are similar to SPNs - though they are generally transmitted with 1 SPN per
message, rather than multiple. Due to the need for implement interoperability, dynamic address claiming is mandatory
in ISOBUS, whereas it's often skipped in J1939 (due to the closed system logic). Further, ISOBUS introduces a number of
alternative physical connectors vs. J1939 as we'll detail shortly.

The ISOBUS connectors
ISO 11783-2 describes a number of physical connectors used in tractors and implements.

#1 Bus extension connector

This connector enables the extension of the ISOBUS
signal lines from the implement within the tractor.
This is e.g. used for adding additional devices such as
Virtual Terminals. The connector will be located in
the tractor cabin on the right side of the operator's
seat.

#2 Implement Bus Breakaway
Connector

The IBBC enables the connection of implements to
the tractor. The connector is located at the rear of
the tractor. In some cases an optional IBBC may also
be installed on the front of the tractor for use with
implements that are front mounted. The IBBC must
have a cap for covering it against dust and the
weather when no implement is connected.

#3 In-cab connector (LBS)

The tractor cabin may include an optional in-cab
connector for establishing a connection to the ISO
11783 network. This is sometimes referred to as LBS.

https://www.csselectronics.com/pages/nmea-2000-n2k-intro-tutorial

#4 Diagnostic connector

The diagnostic connector is located in the tractor
cabin in a location that is easily accessible. As we'll
detail shortly, the diagnostic connector can be a
good option for connecting external data logging
devices for diagnostics - in particular if you need
access to both the J1939 and ISOBUS networks in
parallel.

ISOBUS PGN and SPN [+ DBC]
ISO 11783 uses the concept of Parameter Group Numbers (PGN)
and Suspect Parameter Numbers (SPN) from the SAE J1939
protocol. This means that messages are identified based on 18-bit
PGNs, which can be extracted from the full 29-bit CAN identifiers.
In turn, signals or parameters are referred to as SPNs and will be
'packaged' in the data payload of each message.

We will not cover the PGN structure in detail as it is already
covered in our SAE J1939 intro. However, we will provide a few
practical comments on ISOBUS PGNs and SPNs.

ISOBUS PGN and SPN database

The ISO 11783-7 standard specifies PGN and SPN
details unique to ISOBUS. The decoding details are
publicly available from the VDMA ISOBUS Data
Dictionary. Signals include:

● Front/rear hitch pitch/roll/yaw angle
● Machine selected speed
● PTO information - rear shaft speed
● Engine speed, wheel based speed
● Tractor lights

The public database includes decoding rules for ~800
signals, of which ~650 can be directly transformed to
a format useful in e.g. telematics and data logging. As
explained below, we provide a DBC version of these
~650 ISO 11783 message decoding rules.
Note that the ISOBUS network may also contain OEM
proprietary data that cannot be decoded using the
public information.

ISOBUS vs. J1939 vs. NMEA 2000 [+ DBC files]

If you record data from a tractor/implement, multiple protocols (and hence DBC files) may be relevant.

https://www.isobus.net/isobus/pGNAndSPN
https://www.isobus.net/isobus/pGNAndSPN
https://www.csselectronics.com/pages/can-dbc-file-database-intro

ISOBUS data (implement/tractor)

Naturally, the ISOBUS network will contain data related to the
communication between tractor and implement. This information
will often be decodable using the ISO 11783-7 decoding rules
mentioned above. To enable quick decoding of the standard ISOBUS
data, you can use our ISOBUS DBC file.

learn more

J1939 data (tractor)

If you record data directly from the tractor's CAN bus, it will most
likely be J1939 data. Similarly, if you log data from the ISOBUS
network, some of the data from the Tractor ECU will typically be
J1939. In either case, the J1939 data requires the use of decoding
rules from the J1939 Digital Annex. For this purpose, you can use our
J1939 DBC file.

learn more

NMEA 2000 data (GNSS)

Often, the ISOBUS network contains NMEA 2000 encoded GNSS
information. The NMEA 2000 data may be broadcast as a combination
of single-frames and NMEA 2000 Fast Packet TP frames. To decode the
data, you can use our NMEA 2000 DBC file.

learn more

OEM proprietary data (tractor/implement)

Of course, there will almost always be some messages that are
proprietary regardless of the protocol. These are only known to the
OEM (Original Equipment Manufacturer) and cannot be decoded using
the standard DBC files. Sometimes these messages follow one of the
above standards, though in other cases they may use another
standard entirely (e.g. CANopen).

https://www.csselectronics.com/products/isobus-dbc-file-iso-11783
https://www.csselectronics.com/products/isobus-dbc-file-iso-11783
https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/products/j1939-dbc-file
https://www.csselectronics.com/products/nmea-2000-dbc-file-pgn-database
https://www.csselectronics.com/products/nmea-2000-dbc-file-pgn-database

Example: Decoding data from an ISOBUS network

To exemplify the division that you'll often see in agriculture CAN
bus data, consider a log file from a Fendt tractor with an
implement from another manufacturer. In this case, a CANedge2
has been used to record data from the ISOBUS network. Through
this, 337 unique CAN IDs have been recorded, corresponding to
38 unique PGNs.

The PGNs can be split by protocol as follows:
● ISOBUS DBC: 19 PGNs (~50%)
● NMEA 2000 DBC: 9 PGNs (~24%)
● J1939 DBC: 6 PGNs (~16%)
● Proprietary: 4 PGNs (~10%)

To get this ISOBUS sample data, get our J1939 data pack.

Note on J1939 PGNs

Note here that the connection of the CANedge2 was made on the ISOBUS network - not directly onto the J1939
network. As a result, there are very few decodable J1939 PGNs, since they only reflect the J1939 PGNs repeated by the
Tractor ECU (TECU) onto the ISOBUS. Had the CANedge2 been connected to the J1939 network directly, there would be
a significantly higher amount of CAN IDs overall - including many more J1939 PGNs.

Logging tractor/implement data
In this section we outline how you can record and process data from tractors/implements.

#1 How to choose a CAN bus data logger

If you need to record your data offline, you can use the
standalone CANedge1 to log 2 x CAN to an SD card. The device
can be left in the tractor to record data for weeks or months. To
collect the data, simply extract the SD card.

Alternatively, you can use the CANedge2. This adds WiFi
transfer, allowing it to automatically upload data to your own
server (self hosted or cloud). This enables e.g. large-scale data
collection, automated reporting or predictive maintenance.

#2 How to connect to the CAN bus

Once you've selected a CAN bus data logger, you'll need to identify
how to interface with the CAN networks. We generally recommend
to use the diagnostic connector if possible. As outlined previously,
this enables access to both the J1939 network of the tractor - and
the ISOBUS network.

You can use our J1939-DB9/DB9 (H + J) adapter cable, which
perfectly matches the diagnostic connector pinout and enables you
to log both the J1939 and ISOBUS networks separately into the
same log file on the CANedge.

https://www.csselectronics.com/pages/j1939-data-pack-heavy-duty
https://www.csselectronics.com/products/can-logger-sd-canedge1
https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
https://www.csselectronics.com/products/j1939-db9-splitter-adapter-cable

Further details

Alternatively, you can also use our regular J1939-DB9 adapter if you only need to access the J1939 network. Often many
of the messages will be repeated across networks, so for many use cases this may suffice.

Note that if you aim to connect directly to an implement diagnostic connector (rather than through the tractor cabin),
the CAN 1 pins (C + D) will typically give access to the implement's internal CAN bus - while H + J will still give access to
the ISOBUS network.

#3 How to process the CAN data

To process the raw tractor/implement data, you'll need a
suitable CAN software tool. Specifically, you'll load the log
files and related DBC files to extract the physical values.

The CANedge software tools enable various forms of
analysis. For example, you can use the MF4 converters to
quickly convert the log files to popular file formats, for
use in software like Vector CANalyzer or PEAK
PCAN-Explorer. Or, you can use the asammdf GUI to DBC
decode the data and create visual plots.

You can also perform advanced data processing via the
Python API - ideal if you need to perform statistical
analysis, automated reporting or database integration.

The Python API can also be used to integrate the data
with dashboards - more below.

Example: Tractor dashboard with ISOBUS, J1939 and NMEA 2000 data

To illustrate the role of ISOBUS, J1939 and NMEA 2000 in tractor/implement data logging, check out our Grafana
dashboard playground. Here, each signal is prefixed with the protocol from which it originates.

See also our telematics dashboard intro to learn more about Grafana dashboards.

Details on the recorded data

The log file was recorded using a CANedge2 connected to the implement diagnostic connector. Here, the CANedge2
specifically recorded data from the ISOBUS network. In other words, the log file does not include the tractor's internal
J1939 data, except for the signals that are repeated onto the ISOBUS network.

To decode the data, we used both the J1939 DBC, ISOBUS DBC and NMEA 2000 DBC. We also leveraged the ISO TP
functionality of the CANedge Python API to extract some of the NMEA 2000 Fast Packet data. Note that the proprietary
OEM specific data is not included in the playground as this is not part of the standardized DBC files.

https://www.csselectronics.com/pages/can-bus-software-api-tools
https://www.csselectronics.com/pages/mdf4-converters-mf4-asc-csv
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4
https://www.csselectronics.com/pages/python-can-bus-api#void
https://www.csselectronics.com/pages/telematics-dashboard-open-source
https://www.csselectronics.com/pages/telematics-dashboard-open-source

open playground get sample data

Data logging use case examples
Here we outline a number of classic data logging use cases within agriculture vehicles.

Tractor black box data logger

Need to capture intermittent issues - or handle warranty disputes?

By deploying a CAN bus data logger permanently in your tractors, you
will gain access to a rolling window of insight into the full scope of your
CAN bus networks. This makes it an ideal solution for capturing rare
issues to speed up diagnostics - or to handle cases of warranty
disputes between the OEM and end user.

Monitoring operational agriculture data remotely

Need to remotely collect operational data for post analysis?

As an operator or systems integrator, you may need to collect data
across a fleet of agriculture vehicles in the field. Here, the CANedge2
can be deployed to enable logging of the raw CAN data. The data can
be uploaded when the vehicles return to a stationary WiFi network - or
you can deploy each CANedge2 with a 3G/4G hotspot for continuous
data collection from the field. Using the CANedge Python API, it's easy
to perform big data processing, advanced statistical analyses and
reports.

https://grafana.csselectronics.stellarhosted.com/d/yBc5x90nk6/css-playground-tractor?orgId=1
https://www.csselectronics.com/pages/j1939-data-pack-heavy-duty

CCP / XCP on CAN Explained - A Simple Intro
Need a simple intro to CCP/XCP on CAN bus?

In this practical tutorial, we introduce the basics of the CAN Calibration Protocol (CCP) and the Universal Measurement
and Calibration Protocol (XCP) on CAN. In particular, we'll focus on the CCP/XCP frame structures, trace examples and A2L
files. We also cover practical ECU data logging via polling/DAQ - and how to decode the data.

What is CCP/XCP?
The CAN Calibration Protocol (CCP) is an interface that enables
read/write access to an Electronic Control Unit (ECU). It enables
calibration, data measurement, flashing and more. The Universal
Measurement and Calibration Protocol (XCP) is the successor to CCP
with various improvements - including support for more transport
layers such as Ethernet, FlexRay and SxL.

The CCP/XCP protocols have extensive overlaps, but also important
differences. To avoid confusion, we will first focus on covering the
CCP protocol - and subsequently go through XCP on CAN with
explicit clarification on important differences.

To understand the motivation for CCP/XCP, let's revisit our simple intro to
CAN bus. As explained here, CAN enables communication of data between
different ECUs in a vehicle/machine. Inputs and outputs of every ECU will be
broadcast on the CAN bus. However, the inner workings of an ECU is a black
box. Here, CCP/XCP provides direct access to the inner workings of an ECU.
This lets you request high-frequency parameter data that may otherwise only
be known to the ECU. Further, it also lets you modify the ECU algorithms and
variables, making it easy to test and calibrate ECUs. Importantly, CCP/XCP
enables these interfaces in a standardized way across ECU manufacturers.

https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial

History of CCP/XCP

The CAN Calibration Protocol (CCP) was originally developed by a calibration systems
company, Helmut Kleinknecht. Within a few years, it was improved by a working
group, ASAP (Arbeitskreis zur Standardisierung von Applikationssystemen) that
included Audi, BMW, VW and others. Later ASAP was renamed to ASAM (Association
for Standardization of Automation and Measuring Systems).

Below are the key milestones:
● 1992: CCP 1.0 initial release by Helmut Kleinknecht
● 1995: CCP 1.01 standardized by ASAP
● 1996: CCP 2.0 released by ASAP
● 1998: Drafts of CCP 2.01 and CCP 2.1 were prepared
● 1999: CCP 2.1 was released in February
● 2003: XCP 1.0 incl. support for CAN, Ethernet, SPI, USB
● 2008: XCP 1.1 incl. support for FlexRay
● 2013: XCP 1.2 incl. ECU description file updates + CAN FD
● 2015: XCP 1.3 incl. ECU states, bypass handling, time correlation
● 2017: XCP 1.4 incl. Improvements and new DAQ mode
● 2017: XCP 1.5 incl. software debugging without a debug adapter

Today, XCP (aka ASAM MCD-1 XCP) is the successor to CCP (aka ASAM MCD-1 CCP). However, in practice many ECUs still
use CCP, which makes it relevant to understand both protocols and key differences.

Master-slave architecture

The CCP/XCP protocol is based on a single-master/multi-slave concept.
An external measurement & calibration tool (e.g. a PC/device/data
logger) serves as the master and is able to read/write from one or
more ECUs aka slaves.

The interface between the master and slave is called ASAP1 or ASAM
MCD-1. The CCP/XCP standard also describes the ASAP2 or ASAM
MCD-2 MC interface between the master and an ECU description file.
In practice, this database describes all relevant information about an
ECU in a standardized file format called A2L (ECU Description Files) -
which we will cover shortly.

https://www.asam.net/

CCP/XCP use cases

The CCP/XCP protocol enables multiple use cases:

● Plug & play ECU measurement and calibration
● Recording of ECU data at microsecond resolution
● Access to data internal to the ECU (not broadcast on CAN)
● Measurement via polling or based on events (time, triggers)
● Real-time calibration/adjustment of ECU algorithm variables
● Flash programming of ECUs
● Optional authentication for secure access
● Mainly for OEM development - rarely used post production

Major changes in XCP vs. CCP

● XCP adds support for CAN FD, Ethernet, FlexRay, SxL and more
● Less interpretation - more consistent implementations
● New 'stimulation' (STIM) mode for bypassing ECU calculations
● Predefined/dynamic DAQ lists for efficient communication
● Support for synchronous use of different DAQ modes
● ECU auto detection (master can poll slaves for information)
● More precise data acquisition by measuring ECU timestamps
● More data throughput via new optional commands

CCP/XCP vs. UDS

Before we deep-dive further on CCP/XCP, it can be useful to
understand the role of these communication protocols vs. a
slightly similar protocol, Unified Diagnostic Services (UDS).

As evident from the illustration, CCP/XCP is designed
specifically for pre-launch measurement and calibration by
the OEMs. Typically, the CCP/XCP access to ECUs is disabled
once vehicles are ready for launch. In contrast, UDS is
typically not available in early stage prototype development
and only later added - also being available for
communication post launch.

UDS focuses on diagnostics, whereas the diagnostics
capabilities of CCP/XCP are light-weight. UDS may also be
used by e.g. field technicians and in OEM specific scan tools.

The two protocols do share similarities, though - e.g. in their support for polling/cyclic data acquisition, ECU flashing and
read/write access by address (CCP/XCP) or ID (UDS).

https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services

CCP message types
To understand how CCP communication works we will first review the CCP message types. Overall, CCP communication is
done through a request/response logic - similar to what is used in OBD2, UDS etc. This communication consists of two
types of messages: The Command Receive Object (CRO) and the Data Transmission Object (DTO).

CRO - Command Receive Object

The Command Receive Object (CRO) is a CAN frame sent by the master to an ECU. The 1st byte of the data payload is the
command byte (CMD). This controls what command is being issued by the master to the ECU as per the table overview.

To track the commands issued, the 2nd byte is a counter (CTR). It is indented by +1 for every command sent by the master
and is mirrored in the response from the slave ECU. The remaining 6 bytes depend on the command.

Overview of CRO CMD values

For a list of CRO commands used in CCP, see below table.

https://www.csselectronics.com/pages/obd2-explained-simple-intro
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services

CCP CAN frame identifiers

In CCP, two CAN identifiers are used: One for messages sent by the master (e.g. 0x701) and one for messages sent by the
slave (e.g. 0x702). These identifiers will be specified as part of the A2L (aka ECU Description File), meaning that the master
will acquire this information prior to initiating the connection.

Typically low priority IDs are used for CCP to avoid disturbing safety critical info on the bus.

Importantly, this means that the master does not target specific ECUs through various CAN IDs - but rather through a
connection sequence as shown below.

Example: CCP CRO CONNECT message

Below is an example of a CRO used for initializing communication with a specific ECU:

Trace details

Here, the CAN ID reflects the ID used by the CCP master for communication. The 1st byte is 0x01, corresponding to the
CONNECT command as evident from the previous table. The 2nd byte is the CTR value. The 3rd and 4th bytes are
specific to the CONNECT command and correspond to the target ECU's station address in INTEL byte order. In other
words, the above CRO is used by the master to establish a connection with ECU 0x0139. All subsequent communication
will in this case be with this specific ECU until the master terminates the connection or connects to another ECU.

DTO - Data Transmission Object

The Data Transmission Object (DTO) is a CAN frame sent by the ECU to the master. Three types of DTOs exist as outlined
below:

#1 CRM-DTO: Command Response Message

The CRM-DTO is sent by the ECU in response to a CRO from the master. Here, the CAN ID reflects the CAN ID used by the
ECU (e.g. 0x702).

The data payload for the CRM can be broken down as follows:
● The 1st byte is the Packet Identifier (PID). For the CRM-DTO, the PID always equals 0xFF
● The 2nd byte is the error code (ERR), which can be used to e.g. inform the master of an invalid request.
● The 3rd byte is the counter (CTR), which will match the CTR value from the master's CRO
● The structure of the remaining 5 bytes depend on the original request made in the CRO

Below is the previous connection example trace, including a positive response CRM.

Trace details

The trace shows a connection to the ECU with station address 0x0139, which responds to the initialization command
sent by the master. As evident, the 1st byte is 0xFF (as the message is a CRM). The 2nd byte shows that no errors
occurred, while the 3rd byte matches the CTR of the CRO. With this sequence, the connection between the master and
ECU 0x0139 is established.

Overview of CRM-DTO/EV-DTO ERR values

In the table below we show a set of CRM-DTO/EV-DTO error code values. Note that error codes can be sent in both
CRM-DTOs (if they happen in direct response to a CRO from the master) or in EV-DTOs (if they happen asynchronously to
the master's CRO commands).

#2 EV-DTO: Event Message

The EV-DTO is sent by the ECU in response to an internal event causing a status change in the ECU. This can be used to
inform the master of errors that occurred since the last CRO.

The structure of the EV-DTO is identical to the CRM-DTO from before, with the EV PID always equal to 0xFE. Note that the
CTR does not have relevance for EV-DTOs.

#3 DAQ-DTO: Data Acquisition Message

The DAQ-DTO is used by the ECU to automatically send data
to the master in response to a specific event (e.g. a cyclic
counter, a button or similar).

In DAQ communication, the master starts out by
'configuring' the ECU for a specific measurement sequence.
Once initiated, the ECU will output DAQ-DTOs without
further CROs from the master.

In the DAQ-DTO the PID is a reference to an 'Object
Descriptor Table' (ODT), while up to 7 bytes carry data related to the ODT. More on this shortly.

Below is an example of a DAQ-DTO message sent by an ECU to a master.

Trace explained

The trace shows the DAQ-DTO communication from a slave following an initial configuration sequence. The data
relates to ODT list #37 (0x25) with a payload of 5 bytes. Note how we do not pad the unused bytes (as this is not
required for DAQ-DTOs). Note also how a new CAN ID is introduced for this DAQ response (more on this later).

General note on CCP messages

CRO, CRM-DTO and EV-DTO messages must have a payload length of 8. Any unused bytes are padded with arbitrary
values (we use 0xAA in this intro). DAQ-DTO messages may use the actual payload size.

To recap: A master tool uses CRO messages to send various commands to a slave ECU. The slave ECU can in turn use DTO
messages to respond to the master. Next we'll show how data measurement can be done via these messages.

How to record ECU data via CCP
Let's imagine that you're an engineer working at an automotive OEM. You've been tasked to extract the value of a specific
parameter from an ECU over an extended period.

How do you do it? In the following sections we outline two methods: Polling and DAQ.

Data acquisition via CCP polling

The simplest solution would be to use a CCP measurement concept called polling.
Below we illustrate how such a communication flow may look:

Here, the master sends a request to the slave for 0x04 bytes of data stored at the 'source address' 0x12345678. The 4th
byte is 0x00, which reflects the 'address extension' for this
ECU source address, which can e.g. reflect a specific memory
segment.

The slave responds with the 4 bytes of data, 0xF12A712F, for
this particular source address. This above flow can be used to
e.g. extract real-time parameter data, such as an RPM signal.
It's somewhat similar to how you can request RPM via an
OBD2 request/response flow in most cars.

Effectively, 'polling' is simply a sequence of CRO/CRM-DTOs
with the master using a command called SHORT_UP (short
upload).

Pros & cons of CCP polling

Polling is simple to set up - simply establish an ECU connection and send the
correct request message every X ms. For many practical use cases this can
be a perfectly viable solution. However, polling has two significant
downsides.

#1 Polling is inefficient

Polling requires a request message for every response. If you e.g. need to
measure a 2-byte signal at 100 Hz, that increases the busload by 200
frames/second. The inefficiency is both due to the need for requesting every
single response - but also the fact that response messages are forced to be
8 bytes long, with 3 bytes spent on overhead.

#2 Polling is asynchronous

When polling for multiple signals, the request/responses need to be sent
sequentially with a small delay between each request. As a result, the signal
observations are not time synchronized. This makes data analysis and post
processing more difficult and less precise.

Data acquisition via CCP DAQ

CCP offers an alternative data measurement technique
called DAQ (Synchronous Data Acquisition). DAQ is a bit
more complex to initiate, but solves both the downsides
of polling.

In simple terms, DAQ works as follows:

The master specifies what measurements to record
from the slave, as well as what event should trigger the
communication of data. For example, the master could
request that signals A and B are broadcast every 10 ms,
while signal C may be broadcast every 100 ms. The
master can even configure slaves to broadcast signals
based on events such as a button push or angle change.
Once the DAQ configuration is complete, the master
'starts' the sequence and the slave now autonomously
broadcasts the requested signals using DAQ-DTO messages.

This eliminates the request messages from the master. In addition, the signal data is packaged more efficiently in the
DAQ-DTOs vs. the CRM-DTOs, reducing the busload. Further, with DAQ it is possible to package related signals in the
same DAQ-DTO frames - ensuring that the requested signals are measured in a time synchronous manner - improving
the quality of the data for analysis.

How to configure a DAQ sequence

In order to use the DAQ mode for data measurement, the master has to first configure the ECU accordingly. In practice,
this process is typically handled by sophisticated GUI tools (more on this later). However, to fully understand what is going
on we'll review what happens 'under the hood'.

Two concepts are key in DAQ: Object Descriptor Tables (ODT) and DAQ lists.

Object Descriptor Table

The Object Descriptor Table (ODT) is a list of references to data elements from the ECU memory. If we take the 'short
upload' example used in CCP polling, the master sends a request specifying three elements: The data length (in bytes),
address extension and source address. With this info, the ECU finds the data and sends it to the master. The concept of
an ODT is similar: An ODT is simply a list of element references. Each entry in the ODT reflects an ECU source address -
and optionally also an address extension and data length. In other words, an ODT entry contains the same info that we
used to poll a signal.

ODT example & details

Let's take an example:
We wish to record 7 signals, each of them with a length of 1 byte. To do so, we define a new ODT #0 (PID 0x00) with 7
element entries. Element 1 refers to signal 1 with a specific ECU source address. Element 2 refers to signal 2 with
another source address etc.

When we use the DAQ mode for data measurement, we can now refer to ODT #0 in order to get the ECU to provide us
with time synced data on all 7 signals - within a single DAQ-DTO CAN frame. In other words: The ODT we defined
describes the structure of a DAQ-DTO message, meaning that the ECU will now know how to package the 7 signal bytes
in a single CAN frame - and the master knows how to extract the 7 signal bytes from that CAN frame.
Notice the impact on the busload: If we were to poll all 7 signals, it would require 14 CRO/CRM-DTO CAN frames per
cycle - now it only requires 1 DAQ-DTO CAN frame.

Further, we can easily plot these 7 signals together as they share the same CAN frame timestamp - making it much
easier to perform analysis. For the same reason, ODT lists are typically defined so as to group related signals together.
In practice, a master will often define multiple ODT lists and assign PIDs for each of them in the range of 0x00 to 0xFD.
Each ODT then defines the structure of a separate DAQ-DTO.

DAQ lists

When working with multiple ODT lists, it's useful to group them together. These groups of ODT lists are referred to as
DAQ lists. For example DAQ list #0 may contain ODT #0, ODT #1 and ODT #2.

A DAQ list is characterized by the way in which the data is sampled:
● DAQ list #0 may be set up so that all DAQ-DTOs within it are sampled every 10 ms
● DAQ list #1 might be configured so that DAQ-DTOs in it are sampled when a button is pressed
● …

In other words, a separate DAQ list is required for each unique sampling logic requested for the data measurement. We
will describe the DAQ and ODT initialization shortly, but first consider below example trace for an already initiated DAQ
sequence:

Trace explained

In this example, the target ECU is broadcasting data across three ODT lists in total, as evident from the 1st bytes
spanning from 0x00 to 0x02. While it's not explicitly clear from the trace, the three ODTs are split into two DAQ lists:
One DAQ list contains ODT #0 with a sampling frequency of 10 ms - while DAQ list #1 contains the remaining ODT lists
#1 to #2 with a sampling frequency of 100 ms. This is why the DAQ-DTO with PID 0x00 is observed more frequently in
the trace vs. the other DAQ-DTOs.

How to initialize a DAQ sequence

We've now looked at both the ODT and DAQ lists - but how do we define these over CAN?

In simple terms, the configuration of DAQ lists is done through a (potentially long) sequence of CRO/CRM-DTO frames.
Here, the master essentially specifies the entire DAQ/ODT/element structure element-by-element. To define a new signal
(aka element), the master specifies the address, length and address extension. Next, the master informs informs the ECU
how to package the element in DAQ-DTOs by linking the element to an ODT# and DAQ#.
To understand this in detail, see below trace example and subsequent explanation:

Trace explained

So we have quite a bit going on here, but let's break it down:

We start by using the CRO command GET_DAQ_SIZE. This has two purposes: It informs us about the size of the
specified DAQ list in terms of ODT lists - and it clears the current list. Essentially, this works like a 'reset' command for
the DAQ list, in this case DAQ list #5.

As part of the GET_DAQ_SIZE command we also provide the 11-bit CAN ID 0x712 in the last 4 bytes. This informs the
ECU that it should use CAN ID 0x712 to broadcast the subsequent DAQ-DTOs. This is subtle, but an important aspect:
Essentially, the master is able to specify the CAN ID for every DAQ list, which in turn also enables the master to initiate
DAQ measurement across multiple ECUs in parallel.

The ECU confirms the CRO from the master and informs us that the DAQ list #5 has 3 ODTs with the first PID being
0x07. Next, the master starts populating DAQ list #5 and ODT list #7 with the source address information for 7 x 1-byte
signals. This is done through a simple loop consisting of 7 repetitions of two commands: SET_DAQ_PTR and
WRITE_DAQ.

First, the master uses SET_DAQ_PTR to "select" DAQ list #5, ODT list #7 and element #0 of the ODT list. Next, the
master uses WRITE_DAQ to write the contents of this element reference: A length of 1, an address extension of 0 and a
source address of 0x00001000.

Basically, we have now told the ECU to "package" the value of our 1st signal (which is stored in the specified source
address) into the 2nd byte of the DAQ-DTO that corresponds to DAQ list #5 and ODT list #7 (the 1st byte of the
DAQ-DTO being the PID 0x07).

After this, we repeat the process for the remaining 6 signals until the ODT #7 has been completed.

In this simplistic case we only care about this particular DAQ and ODT list. Therefore, the final step is to start the DAQ
measurement via the START_STOP command. Here, we specify that we wish to start DAQ list #5 and ODT list #7. As
part of this, we specify the timing parameters, namely that event channel 0x03 should be used with a prescaler of 10.
The ECU specific event channel details are specified in the ECU description file.

As evident, the ECU will now start broadcasting data from DAQ list #5 and ODT list #7 at the specified frequency. The
CAN frame payloads include the ODT PID 0x05 in the 1st byte and the 7 'element' signal values in the remaining
payload.

Note also that you can alternatively use the START_STOP command to 'prepare' multiple DAQ lists and ODT lists for
measurement and then use the START_STOP_ALL command to simultaneously start or stop all of them.

How to disconnect from an ECU

Once the data acquisition has completed, the master may disconnect from the ECU via the DISCONNECT command.

Let's look at an example trace:

Trace explained

Here, the 3rd byte 0x01 means that we end the session entirely (in contrast to a temporary disconnection). This
effectively resets the ECU including our previous configuration. To target the specific ECU of interest, we specify the
station address (Intel format) of the ECU, i.e. 0x702. As evident, DAQ is more convoluted to set up - but enables
efficient time synced communication of ECU data.

Decoding CCP signal data from ECUs
In CCP polling/DAQ, you are in practice recording raw CAN frames with specific signal encoding structures. In order to
make sense of the recorded data, you need to decode it to human-readable form aka physical values. This is the same
concept as we've explained in several other CAN-related intros, incl. our intro to CAN bus, J1939, OBD2 and DBC files.
However, CCP decoding involves some extra complexities that we will explain below.

Decoding CCP polling data

Let's review an extended version of the CCP polling request/response from before:

This reflects a decoding challenge: The ECU sends different signals with the same CAN ID - with no way to identify them in
the payload.

Detailed explanation

In the above example, the master is requesting two different 4-byte signal values from the ECU, namely from source
addresses 0x12345678 and 0xABCDEF00. In both cases, the ECU responds with CAN ID 0x702.
In most CAN bus decoding scenarios, you would be able to simply lookup the response CAN ID and find the 'start bit'
and 'bit length' of a given signal to extract the raw data from the payload.

However, that is not possible here as the ECU uses the same CAN ID across two different signals. In other words, the
CAN ID is not sufficient to distinguish between the signal coming from 0x12345678 and the one coming from
0xABCDEF00.

To some extent, this is similar to how OBD2 responses from an ECU use the same CAN ID (typically 0x7E8) across
different signals like speed and RPM. In the case of OBD2 we can, however, easily solve this because the OBD2 PID
(Parameter Identifier) is included in the payload. Together with the CAN ID, this serves as a unique identifier within the
response frame - enabling us to view the response as a case of multiplexing.

We cannot directly do this in CCP polling because the response payload does not include the ECU source address. In
other words: In use cases with multiple CCP polling signals we need to combine information from the request &
response message.

In simplistic terms, we can solve this by "repackaging" the payloads as follows:

https://www.csselectronics.com/pages/j1939-explained-simple-intro-tutorial
https://www.csselectronics.com/pages/obd2-explained-simple-intro
https://www.csselectronics.com/pages/can-dbc-file-database-intro

By doing so, we can process this using multiplexing logic - similar to how we handle OBD2 and UDS decoding. Here, the
CAN ID to look up is 0x702 and the multiplexor is found in the 5th to 8th byte, while the signal value is found in the 12th
to 15th byte. Two separate decoding rules can now be specified, with the relevant one dependent on the value of the
4-byte multiplexor.

In practice such a reconstruction of CAN frames can be done in e.g. a Python script, assuming the CAN trace includes both
the request and response data. Once the CAN frames are reconstructed, it is possible to use DBC files for decoding the
data via multiplexing. Alternatively, the data can be loaded into a software tool supporting CCP/XCP decoding directly.

Decoding CCP DAQ data

Let's briefly review a snippet of the post-initialization DAQ trace from before:

As evident, the DAQ-DTO messages have a pre-specified CAN identifier (0x712 above) and a payload in which the 1st byte
equals the ODT list identifier aka ODT PID (0x07 above). As a result, it is not necessary to "combine" the DAQ-DTO
response frames to uniquely identify which frames contain which signals - this can directly be identified through a
combination of the CAN ID and the ODT PID.

This fact makes the decoding of DAQ-DTO messages simpler than the polling messages. In fact, you can directly create a
DBC file with multiplexing as long as you know the signal encoding in the remaining bytes of each ODT list.

Will the CCP DAQ decoding rules be known?

In most practical applications, it is reasonable to assume that you will know this signal encoding. This is because the
master itself controls (via the initialization sequence) how to package each signal into the DAQ and ODT lists, as
explained in the previous section.

For example, we know that the DAQ-DTOs with CAN ID 0x712 and ODT PID 0x07 contain the signal with source address
0x00001000 in the 2nd byte - because that is how we packaged it during the initialization. From the ECU description file
we can then review how to interpret this 1-byte signal value. The description may state that this signal is a temperature
measured in degC and it should be multiplied by a factor of 0.8 and offset by 20. If you're familiar with DBC files, you'll
note that such information can easily be entered into a DBC, allowing for quick decoding of the trace data in most CAN
software tools.

https://www.csselectronics.com/pages/obd2-data-logger-sd-memory-convert
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services#example-uds-multi-frame
https://www.csselectronics.com/pages/python-can-bus-api
https://www.csselectronics.com/pages/mdf4-converters-mf4-asc-csv

Naturally, if the master changes the initialization to package the data differently on another test run, the implication
will be that the DBC file must be updated accordingly.

The above should make it clear that CCP polling/DAQ can be treated within the normal logic of CAN bus frame decoding -
though both involve some tweaks. DBC files can be used to process the data - but this format is not the most common
choice for working with CCP data. Below we explore another file format that is generally used, the A2L or ASAP2 format.

A2L - ECU Description Files
In the prior sections, we've occasionally referred to
"ECU description files". An ECU description file
contains everything a master tool needs to know to
communicate with an ECU. From a data
measurement perspective, this includes information
on CAN identifiers, available signals, signal decoding
rules, DAQ/ODT information etc.

In practice, the ASAP2 description format (*.A2L) is
used to structure this information. The ASAP2 data
definition was standardized by ASAM in the ASAM
MCD-2 MC, with the first version 1.3.1 being
released June 15 1999, i.e. the same year that the
CCP 2.1 standard was released. The latest version of
the standard, 1.7.0, was released in 2015.

You can view an example A2L file here.

In practice, the A2L file is used to "configure" the master device, enabling communication with the ECU. For example, in
our previous examples we used the CAN IDs 0x701 and 0x702 for the CRO/DTO communication between the master and
ECU. These IDs would be specified in the A2L file. The A2L file also describes how signals are stored in the ECU and how to
decode them. See e.g. below snippet from the A2L example file:

A2L snippet explained

As before, we can compare this to the logic of signal encoding in other CAN protocols and in DBC files. The
'MEASUREMENT' tag is used to envelop the description of a measurement signal, in this case Airflow. It has a detailed
description and a min/max defined by the lower/upper limit.

The signal also has a 4-byte source address, 0x40000144. If we recall the CCP polling outline, this source address could
be used in a SHORT_UP command polling sequence to request the raw value for this particular ECU signal. Similarly, in
the context of DAQ measurement, this source address would be used in the initialization process. In other words, an

https://github.com/NIVeriStandAdd-Ons/ECU-HIL-Demo/blob/master/VeriStand%20Project/ECU%20CCP.a2l

engineer can lookup the signal of interest (Airflow) in a A2L file or A2L GUI tool - and configure his master tool to
request this.

Assuming we've now recorded a trace of raw values, we'd need to decode the information. As explained before, the
first step would be to extract the raw bytes from the response payload - and the method for doing this will depend on
whether we're using polling or DAQ measurement. Further, the byte ordering is not specified by the CCP protocol - but
will be specified within the A2L file at a global or signal level.

Once we've extracted the signal bytes and converted them to decimal form, we need to know how to convert them.

In the DBC file context, this would always be done in the form of a 'linear' equation, i.e. y = bx + c, where b equals a scale
factor and c equals an offset - both specified in the DBC file for each signal.

In contrast to DBC files, the A2L files allow for more complex conversion methods. As evident from the signal description,
it refers to a conversion rule defined as "CompuMethod_6". We can look this up in another section of the A2L file:

A2L snippet explained

As outlined, this conversion rule uses a conversion type called RAT_FUNC. This is one of multiple supported conversion
types and is defined as below:

y =(axx + bx + c)/(dxx + ex + f)

As evident, the rational function is a more sophisticated version of the linear function used in DBC files. In particular, it
supports 5 coefficients, which need to be specified in the computation method. Above, they are set to 0 1 0 0 0 1,
meaning the function simplifies to below:

y = x

In this simple case, the rational function simplifies to a linear function, similar to the one used in DBC files. A2L files in
fact also support another conversion type, LINEAR, which is simply y = ax + b. In the case of the Airflow signal, this
could have been used instead. Finally, the unit is also specified in the measurement details, meaning we can now plot
the Airflow physical value as measured in kg/s. The Format field is %6.2, which should be read as %Length.Layout, with
Length reflecting the overall length of the decoded signal and Layout reflecting the number of decimal places.

Practical use of A2L files

As is probably clear, one does not normally look through the A2L file via a text editor. Rather, the A2L file is simply
loaded in a compatible tool (e.g. a PC GUI tool with a connected CAN interface, or a CAN data logger). This then allows
the engineer to use the tool to perform the relevant measurement from the ECU without having to understand the A2L
file structure and syntax.

This particular signal is simplistic enough to be described within the restrictive DBC file format - but A2L files clearly allow
for more complex decoding rules. For more details on A2L file format, see the ASAM MCD-2 MC standard, as well as a
practical overview.

Seed & key authorization
As explained previously, CCP communication is typically
used by automotive OEM engineers to facilitate
communication with ECUs in pre-production applications.

In some cases all it takes to communicate with an ECU is the
A2L file and a suitable CAN tool. As evident, one can also
simply extract a subset of the A2L file to configure a device
e.g. for measurement of specific signals. However, without
the A2L file, it's practically impossible to perform
communication and hence many OEMs do not require any
additional security measures beyond keeping the A2L file
under lock.

However, some use cases warrant additional security. CCP
supports this via a concept called 'seed & key' authorization. Here, the master requests a random seed from the ECU as
part of the initialization of the ECU communication. The master receives the seed from the ECU and uses it as input for an
internal security algorithm to calculate a key. The master then sends the key to the ECU via CAN - and if it matches the key
calculated internally by the ECU, authorization is provided for further communication.
Below is an example trace for such a communication:

Trace explained

In this example, the master requests the seed via the GET_SEED command 0x12, specifying a 'resource mask' of 0x02 in
the 3rd byte. The resource mask references the level of access requested - with 0x02 being DAQ access only (see the
CCP 2.1 standard for details).

The ECU responds with a frame in which the 4th byte is 0x01, implying that DAQ access is protected (in contrast to 0x00
which would imply that authentication would not be required). The ECU provides the requested seed in the remaining
4 bytes. Based on the seed, the ECU calculates the key and provides it via the UNLOCK command, 0x13. The key is in
this case 4 bytes long. The ECU responds positively including the requested resource mask 0x02, meaning that DAQ
access is now unlocked.

Regarding security algorithm implementation

The most common implementation of the security algorithm is via a *.dll file, since the master device is frequently a
Windows PC with a GUI tool and a CAN interface. The use of a *.dll file also enables standardization across CCP tools,
while eliminating the need for the master tool to know the underlying algorithm used. It is, however, challenging to use

https://www.asam.net/standards/detail/mcd-2-mc/wiki/
https://cdn.vector.com/cms/content/application-areas/ecu-calibration/Docs/AUTOSAR_Calibration_UserManual_EN.pdf

*.dll files in standalone CAN bus data loggers and telematics devices (as they do not run Windows), hence some
companies use alternative solutions - e.g. proprietary file formats better suited for embedded devices.

XCP on CAN - the basics
We have now gone through the basics of CCP. Next, we'll consider XCP on CAN with focus on frame structures.

The XCP packet

To understand the structural changes in XCP on CAN vs. CCP, consider below comparison of the CCP CRO/DTO and the
XCP CTO/DTO. As evident, XCP packets include the XCP CTO (with a similar role as the CCP CRO and CRM-DTO) and the
XCP DTO (with the XCP DAQ-DTO playing a similar role as the CCP DAQ-DTO).

An alternative way to illustrate the role of the CCP vs. XCP messages is via below architecture comparison:

We will cover the XCP on CAN message types in more detail below.

XCP CTO - Command Transfer Object

In XCP on CAN, the CTO is a CAN frame for transferring control
commands, incl. commands (CMD), command responses (RES),
errors (ERR), events (EV) and service requests (SERV). In
contrast to the CRO in CCP, the CTO is used by both the master
and ECU. Note also that a CMD packet from the master must
be answered with a RES or ERR packet from the ECU, while the
other packet types are sent asynchronously.

If we look at the CTO payload, the 1st byte reflects a Packet Identifier (PID). The remaining 7 bytes in an XCP on CAN CTO
payload consists of data, specific to the type of CTO packet. If we compare this structure to the CRO of CCP, it's similar,
except for the exclusion of the command counter byte in XCP.

CAN bus identifiers in XCP

XCP communication requires at least two CAN bus identifiers: One for the master (e.g. 0x551) and one for the ECU (e.g.
0x552). If the master needs to communicate via XCP with more than one ECU, an additional set of identifiers will be
required.

The actual values of the CMD byte across XCP and CCP differ as well. For example, CCP uses 0x01 for the CONNECT
command, while XCP uses 0xFF. See also the table overview for the assignment of CTO PIDs depending on whether
messages are sent from the master or slave.

See also below comparison of CCP vs. XCP CMD codes:

Select CCP vs. XCP CMD values

The below table compares a subset of the command codes between CCP and XCP:

Example: XCP CTO CONNECT message

As in CCP, let's look at how a CONNECT sequence may look in XCP on CAN:

Trace explained

Note that the example does not use the 0xAA padding, as this is optional in XCP on CAN.

In the trace, the master sends a CONNECT CMD (0xFF) to the ECU with the communication mode set to normal (0x00).
Note that, in contrast to CCP, the master does not need to specify a station address in the payload of the CONNECT
frame. This is because the CAN identifiers already uniquely identify which ECU the master is communicating with.

The ECU responds with a CAN frame in which the 1st byte equals the positive response PID (RES). The 2nd byte is the
resource availability, similar to the seed & key CCP communication with 0x04 e.g. meaning that DAQ is available. The
3rd byte relates to the 'communication mode' (here 'optional'), while the 4th byte is the maximum CTO size (here 8
bytes). The 5th and 6th byte equal the maximum DTO size (here 8 bytes), while the 7th and 8th bytes equal the XCP
protocol layer version and transport layer version respectively (both 1 in this case).

Example: XCP Polling

With a connection established, the master can e.g. initiate polling. As in CCP, this can be done via a SHORT_UPLOAD
command:

Trace explained

Here, the master sends a SHORT_UPLOAD CMD (PID 0xF4) for 2 bytes of data. The 3rd byte is reserved, while the 4th
byte of the CTO is the address extension (in this case 0). The remaining 4 bytes equal the source address 0x12345678
(INTEL byte order). In response to the command CTO, the ECU sends a response CTO with the value of the 2 bytes of
data.

XCP DTO: Data Transfer Object

The XCP DTO is used for sending synchronous data. In particular, the DTO is used in DAQ measurement (similar to the
role of the DAQ-DTO in CCP). In XCP, it also enables the transfer of 'stimulation' (STIM) data that can be used in bypassing
the normal algorithm within an ECU. Stimulation and bypassing are topics that we will not cover here.

We will also not go into detail on the XCP DAQ measurement as it's similar in concept to CCP DAQ.

The XCP DTO timestamp

One important thing to note about XCP DAQ measurement, however,
is that it enables the ECU to write the measurement time in the XCP
DTO packets. The implication is that the master is able to correctly
sync ECU data split across multiple frames by utilising the ECU
measurement timestamp, rather than the master's own internal
timestamp. The XCP DTO timestamp is optional and is implemented
as an incrementing counter, with the incrementation logic specified in
the A2L file. If a timestamp is to be included for a specific DAQ list, it
will be written into the 1st ODT list (but not subsequent ones if more
ODT lists exist within the same DAQ list).

DAQ/ODT identification

It is also worth noting that multiple methods exist for packing the DAQ list # and ODT list # information in the DAQ
DTOs. The simplest case is 'absolute ODT numbers', where the ODT list # is unique across all DAQ lists. Here, the PID
(i.e. ODT #) is sufficient for globally identifying an ODT list. Another method exists, however, where relative ODT list
numbers are used across DAQ lists. Thus, you could e.g. have two ODT lists with PID = 0x00, meaning that they cannot
be uniquely identified as the CAN ID is identical across the two DTOs. Here, a 1 or 2 byte DAQ list identifier can be
added in the 2nd to 3rd bytes of the CAN frame payload. With this, one can again uniquely identify a specific ODT list.
The A2L file and ECU will provide information on what method is used.

Optional XCP DTO counter field

A 1-byte counter field may optionally be used in the communication of XCP DTOs. If a CTR field is used in XCP DTO DAQ
packets, the slave will only insert the value of the CTR in the 1st frame of a DAQ list, i.e. in the 1st ODT list.

Links for further reading on CCP/XCP

CCP/XCP of course contain numerous more topics that we have not taken the time to discuss here. Deliberately, we've
focused on the basic topics and concepts related to data logging. However, below you'll find useful links for further
reading.

● Vector's XCP Book v1.5: A detailed overview of the XCP 1.5 protocol
● XCP (Wikipedia): The basics on the XCP protocol
● ASAM MCD-1 XCP overview: Also provides a detailed overview of the XCP protocol

https://cdn.vector.com/cms/content/application-areas/ecu-calibration/xcp/XCP_Book_V1.5_EN.pdf
https://en.wikipedia.org/wiki/XCP_(protocol)
https://www.asam.net/standards/detail/mcd-1-xcp/wiki/

● ASAM ASAM MCD-2 MC overview: Provides an overview of the ECU description file standard
● Seed & key details (Vector): A useful intro to the basics on authorization

Using the CANedge for
CCP/XCP data acquisition
The CANedge is a series of low cost, compact 2 x CAN/LIN bus data
loggers. The CANedge is commonly used by automotive OEMs -
and for this reason a frequently asked question is whether the
device supports CCP/XCP on CAN communication. The answer to
this is 'yes, depending on your use case'. For details, see below. If
you wish to use the CANedge for CCP/XCP on CAN, contact us.

CANedge + CCP/XCP

As we've seen in the previous sections, all it takes to facilitate CCP/XCP polling and CCP/XCP DAQ measurement is to be
able to transmit a specific sequence of CAN frames, based on information that can be identified from an A2L file.
As long as you know how to construct the request frames, you can use the CANedge transmit functionality to set up a
list of single-shot or periodic custom CAN frames to e.g. achieve the CCP/XCP initialization and CCP/XCP polling/DAQ
measurement. The recorded MF4 log files with measurement data can then be processed in e.g. Vector tools or via our
free open source software solutions. In the former case, you could e.g. use our MF4 converters to get the data into
Vector tools and use A2L files for decoding the data. In the latter case, you could process the data via our Python API
(for polling) and/or via asammdf. These tools would currently require creating a DBC file with the decoding rules as
explained previously.

In other words, you can use the CANedge to measure signal data via CCP/XCP on CAN in standalone field deployments,
which offers a low cost method for collecting this information at scale. In contrast, standalone CAN bus data loggers
are not ideally suited for CCP/XCP calibration, except for very specific use cases such as remote calibration of variables
via over-the-air updates.

CANedge seed & key authentication

The CANedge does not currently support seed & key authentication, so OEMs intending to use it for CCP
communication would need to temporarily disable the authentication or to unlock it using a separate device. We are,
however, potentially going to add support for this later on. If you have use cases that involve this functionality, feel free
to contact us for further discussion.

CCP/XCP data logging -
applications
In this section we provide brief examples of how CCP/XCP data logging
may be useful in practice.

CCP/XCP telematics for prototype vehicle fleet

As an OEM, you may need to collect e.g. CAN, CAN FD or LIN bus data from
prototype vehicles in the field. In addition, you may need to collect specific
data internal to an ECU, which can only be measured via CCP or XCP on
CAN. Here, a CAN logger like the CANedge can be configured with a

https://www.asam.net/standards/detail/mcd-2-mc/
https://support.vector.com/sys_attachment.do?sys_id=c9111e0adb4d741486e79e57f49619b0&sysparm_viewer_table=kb_knowledge&sysparm_viewer_id=b796ceb21be6a0502ec72f0a2d4bcbc8
https://www.csselectronics.com/pages/can-bus-hardware-products
https://www.csselectronics.com/pages/mf4-mdf4-measurement-data-format
https://www.csselectronics.com/pages/mdf4-converters-mf4-asc-csv
https://www.csselectronics.com/pages/python-can-bus-api
https://www.csselectronics.com/pages/asammdf-gui-api-mdf4-mf4

custom 'transmit list' consisting of single shot and/or periodic CAN frames. When deployed in the vehicle, the CANedge
will then automatically transmit the pre-defined frames, allowing it to e.g. perform CCP/XCP polling of ECU data - or
initialize DAQ measurement. The collected CCP/XCP data can be combined with the general CAN data in MF4 log files -
and sent via WiFi/3G/4G to the OEM's own cloud server.

Remote CCP/XCP calibration via OTA updates

As a more sophisticated use case, an OEM could utilize a CANedge2 to
perform over-the-air updates to an ECU. For example, a CANedge2 may be
deployed in a prototype vehicle in which an OEM engineer would like to
re-calibrate certain variables in the ECU. To achieve this, the engineer
constructs the relevant sequence of single-shot CAN frames in a new
configuration file for the CANedge. Next, the engineer deploys the new
configuration file on the CANedge2 S3 server, thus triggering an OTA update
- allowing the CANedge2 to transmit the sequence into the vehicle remotely.

Thank you for reading our guide - we hope you found it useful!

CSS Electronics | DK36711949 | Soeren Frichs Vej 38K, 8230 Aabyhoej, Denmark

www.csselectronics.com | contact@csselectronics.com | +45 91 25 25 63 | LinkedIn

Products | Software | Guides | Case studies

https://www.csselectronics.com/products/can-bus-data-logger-wifi-canedge2
http://www.csselectronics.com
mailto:contact@csselectronics.com
https://www.linkedin.com/company/css-electronics/
https://www.csselectronics.com/pages/can-bus-hardware-products
https://www.csselectronics.com/pages/can-bus-software-api-tools
https://www.csselectronics.com/pages/can-bus-intros-tutorials
https://www.csselectronics.com/pages/can-bus-data-logger-case-studies

